ECOSCIENCE CORPORATION WETLAND AND STREAM MITIGATION PLAN

and the second

No. - No. -

ec.

ABC SITE BEAUFORT COUNTY, NORTH CAROLINA

THE NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH, NORTH CAROLINA

June 1999

EXECUTIVE SUMMARY

The N.C. Department of Transportation (NCDOT) is developing wetland and stream mitigation sites within the upper Coastal Plain region of the Tar-Pamlico river basin. As part of this effort, NCDOT has completed detailed mitigation plans for the ABC Mitigation Site (Site), an approximately 75-hectare (187-acre) tract located along Acre Swamp, a tributary of Pungo Creek and the Pamlico River. The Site is situated approximately 18 kilometers (11 miles) northeast of Washington and approximately 77 kilometers (48 miles) west of the coast in Beaufort County, North Carolina.

с. А.

3. . .

Sec. 1.

The Site is situated along lower portions of a Coastal Plain interstream divide (precipitation flat), groundwater slope, and abandoned riverine floodplains located immediately adjacent to Acre Swamp. A majority of the Site has been cleared, ditched, drained, with wetlands effectively eliminated. The drainage system was installed to facilitate agricultural production and to convey drainage from the precipitation flat and groundwater slope into Acre Swamp. The Acre Swamp channel has been dredged and straightened throughout the watershed, inducing abandonment of floodplains, stream instability, and loss of riverine wetlands in the region. Additional impacts to former wetland surfaces include leveling, crowning, and compaction designed to further facilitate agricultural production.

Wetland and stream mitigation activities have been designed to restore wetland features and functions similar to those exhibited by reference wetlands in the region. Site alterations designed to restore characteristic wetland soil features and groundwater wetland hydrology include depression construction, impervious ditch plug construction, ditch backfilling, field crown removal, and harrowing/scarification of wetland soil surfaces. Subsequently, tree and shrub planting will occur throughout the Site to facilitate establishment of diagnostic natural communities, including levee/stream bank forest, nonriverine swamp forest, nonriverine wet hardwood forest, and dry mesic oak-hickory forest. Ecotonal changes between community types will be encouraged to provide diversity and provide secondary benefits, such as enhanced feeding and nesting opportunities for mammals, birds, amphibians, and other wildlife.

After implementation, the Site is expected to support 37 hectares (92 acres) of restored nonriverine forested wetlands and 7 hectares (19 acres) of enhanced nonriverine wetland systems. Stream enhancement activities will also be undertaken along approximately 1252 meters (4107 ft) of Acre Swamp through shrub plantings and riparian forest buffer restoration. Upland buffers / ecotones, riparian buffers, and associated groundwater wetland recharge potential will also be restored within the remaining 31 hectares (76 acres) of uplands and stream-side management areas.

Based on Environmental Protection Agency (EPA) guidelines (Page and Wilcher 1990), approximately 25-ha (63-ac) nonriverine wetland replacement credits may become available for compensatory mitigation use. In addition, stream mitigation credit is proposed at a 2:1 ratio, generating approximately 626 m (2054 ft) of stream replacement credit. Actual mitigation credit generated by restoration activities should be determined based on the achievement of Success Criteria, completed provisions for site protection in perpetuity, and the type and condition of wetlands impacted by a particular project.

TABLE OF CONTENTS

NEWS ST

 $M_{\rm eff} = 0.000 \pm 0.000$

2

LIST OF FIGURES	<u>Page</u> iii
LIST OF TABLES	iv
1.0 INTRODUCTION	
2.0 METHODS	2-1
 3.2 Soils	3-1 3-1 3-1 3-2 ompaction / Leveling and Crowning 3-4 3-4 3-5 3-6 3-6 3-7 3-8
4.1.1Model Description4.1.2Model Applications and Results4.1.2.1Reference Wetland4.1.2.2Wetland Degrada4.1.2.3Wetland Loss Methand4.1.2.4Post-Restoration	4-1 s 4-1 s 4-2 and Model 4-2 ation Model 4-4 odel 4-5 DRAINMOD Results 4-5
4.2.1 Overbank Flood Model4.2.2 Off-Site Drainage4.3 Reference Wetland Studies4.3.1 Groundwater Data Analyses	

5.0	MITIGATION PLAN
	5.1 Wetland Hydrology and Soil Restoration 5-1
	5.1.1 Access Road Improvements
	5.1.2 Off-Site Drainage Redirection
	5.1.3 Ditch Cleaning Prior to Backfill
	5.1.4 Depression Construction
	5.1.5 Ditch Plugs 5-2
	5.1.6 Ditch Backfilling 5-2
	5.1.7 Crown Removal
	5.2 Wetland Community Restoration 5-3
	5.2.1 Planting Plan
6.0	MONITORING PLAN
	6.1 Hydrology Monitoring 6-1
	6.2 Hydrology Success Criteria 6-1
	6.3 Vegetation 6-2
	6.4 Vegetation Success Criteria 6-2
	6.5 Report Submittal 6-3
	6.6 Contingency
7.0	DISPENSATION OF PROPERTY 7-1
8.0	MITIGATION CREDIT ASSESSMENT 8-1
	8.1 Wetland Functions Under Existing Conditions
	8.2 Projected Wetland Functions Under Post-Restoration Conditions 8-2
	8.3 Mitigation Credit 8-3
9.0	REFERENCES
10.0	APPENDICES
	Appendix A: Well Data (available upon request)
	Appendix B: Flood Frequency Analyses

ü

and a second s

and the second se

A second s

e de la companya de la comp

LIST OF FIGURES

Contraction of the second

1997, 7999 1988, 7999

		Following P	age
Figure 1.1:	Site Location And Drainage Area		1-1
Figure 2.1:	1998 Aerial Photograph		2-1
Figure 3.1:	Physiography, Topography, and Land Use		3-1
Figure 3.2:	Soil Map Units		3-3
Figure 3.3:	Typical Soil Profile: Leaf-Bayboro Association		3-3
Figure 3.3a:	Typical Soil Profile: Muckalee-Leaf Association		3-3
Figure 3.4:	Plant Communities		3-4
Figure 3.5:	Groundwater Contours (11/6/98)		3-6
Figure 3.6	Groundwater Contours (1/26/98)	•••••	3-6
Figure 3.7	Existing Jurisdictional Wetlands		3-7
Figure 4.1:	Typical Ditch Cross-Section		4-1
Figure 4.2:	Pre-Restoration DRAINMOD Results		4-4
Figure 4.3:	Post-Restoration DRAINMOD Results (Old Field Stage)		4-5
Figure 4.4:	Post-Restoration DRAINMOD Results (Forested Stages)		4-5
Figure 4.5:	Flood Frequency Analyses		4-6
Figure 5.1	Groundwater and Soil Restoration Plan		5-1
Figure 5.2	Off-Site Drainage Redirection		5-1
Figure 5.3	Typical Cross-Section: Constructed Depression		5-2
Figure 5.4	Typical Cross-Section: Impervious Ditch Plug		5-2
Figure 5.5	Typical Cross-Section: Post-Restoration Soil Surfaces		5-2

Figure 5.6:	Target Landscape Ecosystems	5-3
Figure 5.7:	Planting Plan:	5-3
Figure 6.1:	Monitoring Plan	6-1
Figure 8.1	Wetland Mitigation Design Units	8-1

<u> San an</u>

THE STATE

A TO CONTRACTOR CONTRA

LIST OF TABLES

		Following Page
Та	able 3.1:	Representative Groundwater Elevations
Т	able 4.1:	DRAINMOD Results, Reference Wetland Hydroperiods for Leaf Soils 4-2
Т	able 4.2:	DRAINMOD Results, Reference Wetland Hydroperiods for Muckalee Soils 4-4
T	able 4.3:	DRAINMOD Results, Zone of Wetland Loss and Wetland Degradation for Leaf Soil 4-4
Т	able 4.4:	DRAINMOD Results, Zone of Wetland Loss and Wetland Degradation for Muckalee Soil 4-4
Т	able 4.5	Flood Frequency Analyses, Water Surface Elevations for Different Flood Frequencies 4-6
Т	able 4.6:	Reference Forest Ecosystems Plot Summary:Riverine Swamp Forest4-10
Т	able 4.7:	Reference Forest Ecosystems Plot SummaryMesic Hardwood Forest4-10
Т	able 4.8:	Reference Forest Ecosystems Plot Summary Nonriverine Wet Hardwood Forest
. T	able 5.1	Stocking Levels, Full Planting Areas 5-6
Т	able 5.2	Stocking Levels, Supplemental Planting Areas 5-6

WETLAND AND STREAM MITIGATION PLAN

ABC SITE BEAUFORT COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

General Assembly House Bill 399, ratified in 1989, provides for the establishment of the North Carolina Highway Trust Fund. This fund was established to facilitate the development of free flowing, safe, inter-city travel for motorists, and to support statewide growth and development objectives. In 1994, the State of North Carolina created a new transportation plan called Transportation 2001 that emphasizes, among other things, the acceleration of highway projects associated with key regions of economic development. As part of this effort, the N.C. Department of Transportation (NCDOT) is planning and constructing roadway improvement projects in the eastern portion of the state. Priority completion corridors in this region include projects such as the NC 43, Rocky Mount Bypass in Edgecombe County (U-2218) and the US 17, Washington Bypass in Beaufort County (R-2510). Highway projects involve unavoidable wetland impacts; however, contiguous, on-site restoration-based compensatory mitigation is sometimes unavailable in the region.

NCDOT is attempting to establish wetland mitigation areas in regions of the state where projected roadway improvement projects will result in unavoidable impacts to wetlands. In 1997, the NCDOT performed a search for suitable wetland mitigation sites within the upper Coastal Plain region of the Tar-Pamlico River Basin. This search resulted in the identification of the ABC Mitigation Site (Site), an approximately 75-hectare [ha] (187-acre ([ac]) tract located adjacent to Acre Swamp in Beaufort County (Figure 1.1).

The Site is planned as a compensatory wetlands mitigation project for the central and upper Coastal Plain region of North Carolina. The purpose of this document is to: 1) describe existing conditions; 2) detail wetland restoration studies and component analyses; 3) present a mitigation plan for restoring wetlands; and 4) present a plan for monitoring and measuring success of restoration efforts. Wetland functional replacement potential is also described to assess site utility for compensatory mitigation in the region.

Same States

2.0 METHODS

Natural resource information was obtained from available sources. U. S. Geological Survey (USGS) mapping, U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping (Pinetown 7.5 minute quadrangle), and Natural Resource Conservation Service (NRCS) soil surveys (USDA 1995) were utilized to evaluate existing watershed, stream, land use, and soil information prior to on-site inspection. Historical aerial photographs (1958, 1973, 1994) were reviewed to identify land use patterns at the Site and in the watershed. Disturbances to wetlands, such as dredging of Acre Swamp and Site-conversion to crop land were tracked and utilized to orient restoration design.

Current (1998) aerial photography was prepared and utilized to determine primary hydrologic features and to map relevant environmental features (Figure 2.1). Detailed topographic mapping to 0.3 meter (m) (1 foot [ft]) contour intervals was generated from the aerial photography. Subsequently, groundwater piezometers, field crowns, reference wetland surfaces, channel cross-sections, and profiles were surveyed to quantify elevational gradients affecting hydrologic parameters and to predict wetland restoration potential.

North Carolina Natural Heritage Program (NCNHP) data bases were evaluated for the presence of protected species and designated natural areas which may serve as reference (relatively undisturbed) wetlands for restoration design. A listing of Federal-protected species whose ranges extend into Beaufort County was also obtained from the USFWS (May 1999). State Historic Preservation Office (SHPO) records were evaluated for the presence of significant cultural resources in the Site vicinity. Regional conservation areas within the nearby, Dismal Swamp refuge were also evaluated for reference use. Identified sites were sampled and evaluated to provide baseline information on target (post-restoration) wetland condition. Characteristic and target natural community patterns were classified according to Schafale and Weakley's, <u>Classification of the Natural Communities of North Carolina</u> (1990).

Detailed field investigations were performed in February and March 1999, and consisted of hydrological measurements, soil surveys, and mapping of on-site resources. Project scientists evaluated hydrology, vegetation, and soil parameters to delineate jurisdictional wetlands and open waters. The wetland boundaries were mapped using global positioning system (GPS) technology. Existing plant communities were also delineated, mapped, and described by structure and composition.

NRCS soil mapping was modified to identify hydric soil boundaries and to predict (target) biological diversity prior to human disturbances. NRCS soil map units were ground truthed by licensed soil scientists to verify existing units and to map (by GPS) inclusions and taxadjunct areas. A taxadjunct area contains soils which cannot be classified in a series recognized in the classification system. Such soils are named for a series they resemble and are designated as taxadjuncts to that series.

Hydrologic conditions were characterized by the following activities: 1) excavation of a series of soil borings and installation of piezometers into the borings; 2) collection of periodic water level measurements; 3) analysis of surface water profiles along drainageways; 4) development of groundwater contour maps; 5) modeling of groundwater withdrawal rates by DRAINMOD; and 6) flood frequency analyses (WSPRO) along the Acre Swamp canal.

A series of 14 automatic-recording wells were installed in November, 1998. Water level elevations were downloaded periodically from November 6 through April 4, 1999. Well data is presented in Appendix A. Groundwater contour maps were generated at periodic intervals to establish primary wetland physiographic areas and to assess drainage impacts during the early growing season. Groundwater conditions were modeled using DRAINMOD, a computer model for simulating drainage rates for relatively shallow soils with high water tables. The model was utilized to predict historic hydroperiods, the extent of wetland degradation due to ditching, and the potential for wetland restoration through effective removal of the drainage network.

Flood frequency analyses were performed along the Acre Swamp canal to predict flood extent into the Site for the 1, 2, 5, 10, 50, and 100-year storm events. The analyses utilized existing Federal Emergency Management Agency (FEMA) studies along with a WSPRO model. The extent of flooding was used primarily to determine the potential for riverine wetland restoration in lower reaches of the Site.

Field survey information was platted and compiled within Geographic Information System (GIS) base mapping and analyzed to evaluate the Site under existing conditions. Based on field investigations and data analyses, a wetland restoration and enhancement plan has been developed for review and approval prior to on-site implementation.

ł

EXISTING CONDITIONS 3.0

PHYSIOGRAPHY AND LAND USE 3.1

The Site is located in the Atlantic Coastal Plain Physiographic Province of North Carolina within the Outer Coastal Plain region of the Pamlico River Basin. This region of the Pamlico River Basin extends from the Suffolk Scarp near the town of Washington east to the Pamlico Sound (Hydrologic Unit #03020104 and #03020105 [USGS 1974]). The Site is located approximately 18 km (11 mi) northeast of Washington and approximately 77 km (48 mi) west of the coast.

The Site is situated along lower portions of a Coastal Plain interstream divide, intermediate slope, and former riverine floodplain located immediately adjacent to Acre Swamp, a tributary Adjacent, broad interstream divides cover of Pungo Creek and the Pamlico River. approximately 27 square kilometers (km²) (1.2 square miles [mi²]) of land with groundwater and surface water discharging from these interstream divides towards the Site (Figure 1.1). Elevations to the west, within upper reaches of the watershed, extend to approximately 15 m (50 ft) above mean sea level (MSL). Conversely, elevations within the Site range from approximately 10 m (33 ft) above MSL along the western periphery to approximately 6 m (20 ft) above MSL at the Site outfall (Figure 3.1).

The Site has been subdivided into three primary physiographic landscape units for wetland classification and restoration planning: 1) precipitation flats; 2) groundwater slopes/ridges; and 3) abandoned riverine floodplains (Figure 3.1). The primary variables utilized to segregate wetland landscape units comprise land slope, groundwater flow characteristics, soil features, and the primary hydrologic influence on historic wetland function.

Precipitation Flats

Precipitation flats, occupying approximately 36 ha (90 ac) of the 75 ha (187 ac) Site, are located along the western and northern Site periphery. Under historic conditions, these flats are expected to exhibit primarily vertical to semi-radial groundwater flow. Therefore, wetland hydrology is driven primarily by precipitation, the relative lack of land slope, and very low hydraulic conductivity in proximity to the soil surface. Perched water tables and the lack of drainage outlets within this physiographic area induce a mosaic of enclosed hummocks, depressions, and sloughs exhibiting a range of wetland hydroperiods. Groundwater models (Section 4.2) and reference studies (Section 4.4) suggest that these precipitation flats, in undisturbed conditions, support a broad range of hydroperiods from less than 5% to more than 20% of the growing season. These variations may occur over distances of less than 30 m (100 ft), dependent upon localized surface topography and drainage characteristics. This landscape mosaic supports numerous ecotonal fringes between designated natural communities including mesic pine flatwoods, mesic mixed hardwood forest, nonriverine wet hardwood forest, nonriverine swamp forest, and vernal pools (Schafale and Weakley 1990).

Groundwater Slopes/Ridges

Groundwater slopes, comprising approximately 29 ha (72 ac), are represented as a broad band through central portions of the Site, adjacent to the former floodplains of Acre Swamp (Figure 3.1). The slope physiographic areas exhibit primarily semi-radial to radial groundwater flow and discharge towards Acre Swamp (Section 3.4). Increasing land slope, relatively coarse subsurface soils, and adjacent low-lying floodplains induce accelerated groundwater movement with intermittent wetland pockets located in areas where the groundwater table intersects the land surface along the base of the slope. Therefore, wetland hydrodynamics are driven primarily by groundwater migration and discharge characteristics from the adjacent interstream divide. At the Site, a large majority of the slope physiographic area supports nonhydric soils or marginally hydric soils that historically did not support wetlands. Typical communities include pine flatwoods, stream-head communities, and mesic hardwood forest.

Abandoned Riverine Floodplains

The riverine floodplain physiographic area, comprising approximately 10 ha (25 ac), abuts an approximately 1252-m (4107-ft) reach of Acre Swamp (Figure 3.1). The Acre Swamp channel supports a drainage area encompassing approximately 612 km² (27 mi²). Under historic conditions, the area sustained near surface, lateral discharge of groundwater from adjacent slopes towards the stream channel and periodic overbank flooding from the stream channel onto the floodplain. The Acre Swamp channel has been dredged and straightened throughout the watershed to depths ranging from 2 m (6 ft) to 3 m (10 ft) below historic grade, inducing abandonment of floodplains within the Site. Hydrodynamic influences under existing conditions are dominated by accelerated lateral groundwater and surface water migration into the channel and floodplain forming (erosional) processes within the floor of the dredged Acre Swamp channel.

A majority of the Site has been cleared, ditched, drained, with wetlands effectively eliminated. The drainage system was installed to facilitate agricultural production and to convey drainage from the precipitation flat and groundwater slope into the Acre Swamp canal. The drainage network includes approximately 9000 m (30,000 ft) of ditches/canals distributed systematically throughout the Site.

On-Site Structures

Several structures are situated along the northwestern periphery of the Site (Figure 3.1). Structures consist of a house, septic system, and storage shed. Access to the Site is obtained by use of the driveway leading to these structures. No potentially hazardous materials or significant cultural resources were noted during field assessments. However, modifications to drainage networks for wetland restoration must be designed to avoid or minimize impacts to the adjacent structures and access roadway (Section 4.3).

3.2 SOILS

Surficial soils have been mapped by NRCS (USDA 1995). In addition, hydric soils boundaries were delineated and mapped by GPS. In March 1999, soil map units were field verified by licensed soil scientists to modify NRCS soil map units and to locate inclusions and taxadjunct

3-2

areas. General transects were established by soil scientists and sampled to ensure proper coverage. Refined soil mapping is depicted in Figure 3.2. Typical soil profiles are depicted in Figure 3.3.

Four soil series were identified, including Lenoir (*Aeric Paleaquults*), Leaf (*Typic Albaquults*), Bayboro (*Umbric Paleaquults*), and Muckalee (*Typic Fluvaquents*) (Figure 3.2). Bayboro inclusions occur throughout the Leaf soil map unit depicted in Figure 3.2. However, conversion to crop land and field crowning have buried landscape depressions that are characteristic of these inclusions. These Bayboro inclusions appear to range from less than 0.004 ha (0.01 ac) to 0.02 ha (0.05 ac) in size. Similarly, Leaf inclusions and a sandy clay taxadjunct to the Muckalee series appear to occur along outer portions of the Muckalee soil map unit. However, these inclusions and taxadjuncts have been obscured by field crowning.

These series typically have upper horizon soil textures ranging from silt loam to clay with drainage classes ranging from very poorly drained to moderately well drained. The seasonal high water table ranges from at or above the soil surface to a depth of 1.5 m (5 ft) below ground. Actual surface horizon textures varied, with specific sites being affected by fluvial activity, agricultural practices, and erosion within the surface (A) horizon. Surface soil textures documented in the field for each map unit were utilized to refine drainage models implemented for wetland (groundwater) restoration planning (Section 4.1 and 4.2).

Hydric soils are defined as "soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper soil layer" (USDA 1987). Hydric soils comprise 72 percent (approximately 54 ha [135 ac]) of the 75-ha (187-ac) Site. Hydric series present include the Muckalee, Leaf, and Bayboro map units. Organic matter within these series potentially range from a minimum of 0.1 percent in the Muckalee series to 10 percent in the Bayboro series. However, reductions in organic matter are expected as a result of long term drainage, crowning, harvest, erosion, and oxidation. Construction of large canals and feeder ditches have drained most of the Site to the extent that hydric conditions in the upper soil horizons are currently limited.

Frequently flooded Muckalee loam is characteristic of floodplains associated with Acre Swamp. Areas underlain by Muckalee loam have moderate permeability and available water capacity. The Leaf and Bayboro series represent flats, toe slopes, and depressions in interior areas of the Site. These soils exhibit very low permeabilities and high shrink/swell potential with clay (B) horizons. Perching of water for various periods after rainfall events is typical for these soil types.

Non-hydric series present include the Lenoir map unit. This series comprises approximately 21 ha (52 ac). These soils are primarily non-hydric but may contain minor hydric inclusions of Leaf or Bayboro. The non-hydric series occupies a relatively narrow escarpment adjacent to the Acre Swamp floodplain and a broad, convex ridge extending through the northern section of the Site. These soils typically lack wetland hydrology but are included in the mitigation landscape to provide the potential for restoration of upland buffers and upland/wetland ecotones.

3.2.1 Surface and Subsurface Soil Compaction/Leveling and Crowning

Soil surfaces have been leveled, graded, crowned and compacted as a result of agricultural practices. In crop land supporting clayey subsurface horizons (ex: Leaf and Bayboro series), the upper approximately 30 cm (12 in) of soil surface (A horizon) represents relatively high permeability, loamy soils that have been annually plowed. Immediately below the plow layer, a compacted clay layer or "pan" (upper portion of the B horizon) exhibits very low permeabilities. Precipitation infiltrates to the top of this clay pan and may migrate laterally through the permeable surface horizon. As a result, perched water in active crop land tends to flow laterally away from crowns and towards ditches placed in downslope areas. This preferential migration laterally through the surface soil horizon may assist in providing adequate drainage for farming shallow rooted crops in hydric soil areas.

During construction of ditches, earthen spoil material was utilized to establish crowns in the inter-field area between drainage ditches (Figure 3.1). Subsequent annual tilling was also designed to progressively elevate the inter-field area between ditches. The crowns extend, on average, to approximately 0.15 m (0.5 ft) above the surrounding soil surface and serve to further promote drainage within the rooting zone.

Surface (A horizon) and subsurface (B Horizon) microtopography represents an important component of nonriverine wetlands as water storage functions and micro-habitat complexity are provided by hummocks and swales across the wetland landscape. If ditches are back-filled but the clay pan is not modified, perched water may continue preferential migration laterally through the surface soil layer, promoting flood conditions in downslope areas and dryer conditions in upper landscape positions.

3.3 PLANT COMMUNITIES

Distribution and composition of plant communities reflect landscape-level variations in topography, soils, hydrology, and past or present land use practices. Communities identified on the study area include; wet hardwood forest, upland hardwood forest, pine/mixed hardwood forest, and agricultural fields (Figure 3.4).

Wet hardwood forests are situated in the northern portion of the study area in precipitation flats, depressions, floodplains adjacent to Acre Swamp, and intermediate groundwater slope areas not cleared for agriculture. This area may serve as reference (relatively undisturbed) wetlands utilized to orient restoration design and to monitor restoration areas. Characteristic canopy species include laurel oak (*Quercus laurifolia*), sweetgum (*Liquidambar styraciflua*), black gum (*Nyssa sylvatica*), tulip tree (*Liriodendron tulipifera*), and swamp chestnut oak (*Quercus michauxii*). A dense subcanopy and shrub layer is characterized by young canopy species as well as cherrybark oak (*Quercus pagoda*), Chinese privet (*Ligustrum sinense*), titi (*Cyrilla racemiflora*), sweetbay (*Magnolia virginiana*), bitter gallberry (*Ilex glabra*), fetter-bush (*Leucothoe racemosa*), sweet pepperbush (*Clethra alnifolia*), and giant cane (*Arundinaria gigantea*). The subcanopy and shrub layer is generally densely overgrown with vines such as muscadine grape (*Vitis rotundifolia*), common green brier

i. Garan

83

Hydraulic Conductivity (inches/hour) Texture Sandy Clay Typical Ditch Cross-section Depth in inches Open Ditch Section 10 YR 5/ -l 10 20 30 50 60 80 0 40 70 **Muckalee Leaf Association** Hydraulic Conductivity (inches/hour) Texture Sandy Clay Sandy Loam Fine Sand Agricultural Fields Ap 10 YR 2/1 18 H. (**Depth in inches 2**82 20 - 01 1 - 08 1 10 20 09 0 30 40 50 **Typical Soil Profile** Figure: 3.3a EcoScience Corporation **ABC Mitigation Site** Project 98-021.03 Beaufort County, North Carolina Date: April 1999

(*Smilax rotundifolia*), laurel-leaf greenbrier (*Smilax laurifolia*), and crossvine (*Bignonia capreolata*). The forest floor is covered by herbaceous groundcover characterized by Nepal microstegium (*Eulalia vimineum*), false nettle (*Boehmeria cylindrica*), and ferns such as cinnamon fern (*Osmunda cinnamomea*), netted chain-fern (*Woodwardia areolata*), and royal fern (*Osmunda regalis*). Much of the forest floor remains saturated for extended periods of time and have Sphagnum mats blanketing microtopographic depressions.

Upland hardwood forests are situated in the northern portion of the Site and are located on non-hydric soils adjacent to agricultural fields. Upland hardwood forests support mixed mesophytic hardwoods such as white oak (*Quercus alba*), black gum, tulip tree, red maple, and sweetgum. The subcanopy is characterized by American holly (*Ilex opaca*), horse sugar (*Symplocus tinctoria*), pokeweed (*Phytolacca americana*), Chinese privet, sweet pepperbush, American beautyberry (*Callicarpa americana*), and common catbrier.

Pine/hardwood forests are located in the northern portion of the Site adjacent to agricultural fields. This community is bounded by both wetland and upland hardwood forest, and agriculture. Pine/hardwood forests are confined to upland locations; however, wetland vegetation does grade into the community. The community, although dominated by loblolly pine (*Pinus taeda*), is characterized by species associated with upland and wetland hardwood forest such as sweetgum, red maple, water oak, cherrybark oak, wax myrtle (*Myrica cerifera*), horse sugar, highbush blueberry (*Vaccinium corymbosum*), sweetbay, American holly, and fetter-bush.

Agricultural fields occur in the southern portion of the Site and support a current crop of soybeans. Invasive weeds dominate unproductive areas including species such as rough cockle-bur (*Xanthium strumarium*), sicklepod (*Cassia obtusifolia*), ragweed (*Ambrosia artemisiifolia*), pigweed (*Chenopodium album*), Pennsylvania smartweed (*Polygonum pennsylvanicum*), goldenrod (*Solidago sp.*), and various grasses such as Johnson grass (*Sorghum halepense*), vasey-grass (*Paspalum urvillei*), and ground cherry (*Physalis virginiana*).

3.4 HYDROLOGY

The hydrophysiographic region consists of relatively flat, Inner Coastal Plain environments characterized by moderate rainfall (USDA 1995). The Site is situated along the periphery of a Coastal Plain interstream divide and includes groundwater slopes and former riverine floodplains located immediately adjacent to Acre Swamp. Therefore, historic wetlands were most likely complex, influenced by groundwater and surface water flow from the adjacent interstream divide, overbank flooding from Acre Swamp, as well as precipitation inputs maintained within the Site.

Topographically, the Site is generally expressed as a broad flat with an escarpment generally grading towards Acre Swamp. Adjacent, broad interstream divides cover approximately 27 km² (1.1 mi²) of land with groundwater discharging from these interstream divides towards the Site. Near surface groundwater is intercepted by a network of drainage ditches designed to facilitate alternative land uses such as agriculture and residential development in the watershed.

3-5

Under historic conditions, interior wetlands most likely served as an above headwater storage and groundwater discharge area for Acre Swamp. Conversely, lateral surface (stream) flow and overbank flooding is expected to have dominated wetland hydrodynamics in the riverine floodplain. The floodplain appears to have surrounded a number of intermittent stream channels which coalesced into primary channels near the confluence with Acre Swamp. The Acre Swamp channel appears to have represented a third order stream prior to channelization (Strahler 1964). The canal supports a drainage area of approximately 612 km² (27 mi²) at the Site boundary. In addition, remnant first order stream channels are expected to have occurred within crop lands under historic conditions. However, these surface flow pathways have been obscured under existing land uses.

Currently, groundwater migration has been accelerated in crop lands by leveling of the soil surface, increased permeability within the plow layer, and potential removal of subsurface impediments to flow (rooting functions and B horizon surface complexity). The induced groundwater migration is intercepted by a network of inter-field ditches which effectively drains farmed portions of the Site. Approximately 9000 m (30,000 ft) of ditches have been constructed and range from approximately 1.2 m (4 ft) deep in inter-field ditches to 3 m (10 ft) deep at the Site out-fall. This drainage network connects discharge to Acre Swamp, a dredged canal, which extends towards Pungo Swamp, approximately 2.6 mi (4.3 km) below the Site.

3.4.1 Groundwater flow

Groundwater flow maps were prepared periodically for the period November 1998 through April 4, 1999. Groundwater elevation data at periodic intervals is presented in Table 3.1. Groundwater flow maps for November 6, 1998 and January 26, 1999 are presented in Figures 3.5 and 3.6. During the sample period, groundwater was encountered from above ground surface in the forested areas to a depth of 1.06 m (3.48 ft) within the farmed fields. The highest groundwater elevations were measured in northwestern forested areas representing a Bayboro depression (Well # 11). Inundation of this depression occurred in early January 1999 and has persisted into early April 1999. This area will serve as a reference wetland to evaluate established hydroperiods within restored wetland areas. As expected, water table elevations decrease along accelerated drainage gradients within the groundwater slope and riverine floodplain area adjacent to the Acre Swamp canal.

3.4.1 Off-Site Drainage

As depicted in Figure 3.1, eight surface flow infalls have been identified extending from adjacent properties into the Site. Infalls consist primarily of ditches along the southern, western, and northern project boundaries, and Acre Swamp along the eastern boundary. Infalls # 1, 2, 3, 7, and 8 discharge into ditches along the site periphery. Conversely, Infalls # 4, 5, and 6 discharge into ditches bisecting north-central sections of the property. These infalls are associated with a house and driveway located in the area. Provisions for drainage of infalls # 4, 5, and 6 must be made within the Site interior (Section 4.3.2).

 LEGEND

 APPROX. MITIGATION

 SITE BOUNDARY

 APPROX. CONTOUR

 30
 MAJOR CONTOUR

 EXISTING DITCHES

 AND CANALS

 TREE LINE

 30
 GROUNDWATER CONTOURS

 Image: Strain of the soil surface

APO

MAP COMPILED BY PHOTOGRAMMETRIC METHODS.

ACCESS ROAD W#13 EL-31.0 -EXISTING BUILDINGS (TYP) Θ **⊙₩**#14 EL•30.9 ð0-1 30) 30 30 393 ja ર્ડેવ, 36 W#11 ₩#2 ① EL=31.6 Ø €EL-35 30. APO POND ð W#10 1 1 ₩#8 ⊙ EL - 31.7 The second ₩#12 ∰<u>k</u>≣30. W#3. Ø 0 $oldsymbol{eta}$ W#9, EL-29. Ø . 10 TU 6 LEGEND APPROX. MITIGATION SITE BOUNDARY 9 APPROX. CONTOUR MAJOR CONTOUR - 30 EXISTING DITCHES TREE LINE m 30 GROUNDWATER CONTOURS **●**₩# GROUNDWATER WELLS APPROXIMATE MAP AREA: Groundwater within 0.3 meters (1 foot) of the soil surface PLAN VIEW

MAP COMPILED BY PHOTOGRAMMETRIC METHODS.

TABLE 3.1

and the second sec

Representative Groundwater Elevations ABC Mitigation Site

Ď	Date	11/6	11/6/98	12/2	12/20/98	1/2(1/26/99	4/4	4/4/99
Well Number	Well Elevation (feet above MSL)	Depth below ground surface (feet)	Ground- water Elevation (feet above MSL)						
				Restoration P	Restoration Planning Wells				
W-1	33.56	3.48	30.1	1.68	31.9	0.24	33.3	1.75	31.8
W-2	32.09	3.30	28.8	1.11	31.0	0.49	31.6	1.94	30.2
W-3	33.10	3.48	29.6	1.87	31.2	0.73	32.4	3.03	30.1
W-4	25.18	3.47	21.7	2.62	22.6	1.68	23.5	3.31	21.9
W-5	24.36	3.45	20.9	1.84	22.5	1.48	22.9	2.39	22.0
M-6	26.39	3.45	22.9	2.49	23.9	2.04	24.4	2.95	23.4
W-8	32.24	3.45	28.8	1.03	31.2	0.55	31.7	1.91	30.3
6-M	31.09	3.48	27.6	1.03	30.1	1.42	29.7	2.18	28.9
W-12	31.78	3.47	28.3	2.04	29.7	1.45	30.3	2.53	29.3
W-13	31.46	3.48	28.0	0.87	30.6	0.51	31.0	1.73	29.7
W-14	31.13	2.83	28.3	0.35	30.8	0.23	30.9	1.14	30.0
				Referenc	Reference Wells				
W-10	29.92	3.48	26.4	1.53	28.4	Well D	Well Damaged	Well D	Well Damaged
W-11	31.83	3.41	28.4	2.05	29.8	-0.18	32.0	-0.60	32.4

3.5 WILDLIFE

Although the original forest tracts have been utilized for large-scale agricultural purposes, the adjacent forests provide food, water, and cover for various species of wetland dependent wildlife. Forested floodplains along upper and lower reaches of Acre Swamp support wildlife species adapted to riparian forest habitat. In addition, ephemeral drainageways and ponding within contiguous wetland flats and slopes provide interaction among riparian and non-riparian wildlife guilds in the region. Wetland/upland ecotones provide additional habitat diversity near the Site. These ecotones are among the most diverse and productive environments for wildlife (Brinson *et al.* 1981).

In spite of area-wide changes to forested habitat (agriculture, timber harvesting, textiles, and sand mining practices) within the region, it is still known to support large mammals such as black bear (*Ursus americanus*), bobcat (*Felis rufus*), and white-tailed deer (*Odocoileus virginianus*). In addition, the swamp and surrounding lands support many smaller mammals in a complex food chain of predator and prey elements.

Characteristic bird species that can be expected to utilize wetlands in the region include great blue heron (*Ardea herodias*), green heron, mallard (*Anas platyrhynchos*), wood duck (*Aix sponsa*), and barred owl (*Strix varia*). In addition, a high number of passerine birds, both permanent and summer resident species, nest in hardwood swamp forest. Among these are several neotropical migrants such as Swainson's warbler (*Limnothlypis swainsonii*) and prothonotary warbler (*Protonotaria citrea*), and other forest interior species such as the wood thrush (*Hylocichla mustelina*) and Acadian flycatcher (*Empidonax virescens*), that require large tracts of contiguous forest for survival (Keller *et al.* 1993).

Extensive areas of standing water, seasonal wetlands, and stream channels in the area provide favorable conditions for many species of reptiles and amphibians. Characteristic species include red-bellied water snake (*Nerodia erythrogaster*), cottonmouth (*Agkistrodon piscivorus*), yellow-bellied turtle (*Trachemys scripta*), spotted turtle (*Clemmys guttata*), southern leopard frog (*Rana utricularia*) and marbled salamander (*Ambystoma opacum*). These and numerous other reptiles and amphibians are integral components of the wetland food chain.

Extensive agricultural land on the Site, considered prevalent in the region, provides limited habitat opportunities for these wetland dependent species.

3.6 JURISDICTIONAL WETLANDS

Jurisdictional wetlands and waters were evaluated and mapped in the field by GPS. Jurisdictional areas are defined using the criteria set forth in the COE Wetlands Delineation Manual (DOA 1987). The field determination was supplemented by the groundwater drainage model near ditches and canals in the forested area (Section 4.1). Approximately 9 ha (23 ac) of jurisdictional wetlands were identified within forested sections of the Site. Figure 3.7 depicts the location of existing jurisdictional wetland systems. NRCS records indicate that farmed portions of the Site are designated as prior-converted (PC) crop land. A PC crop land is a wetland which was both manipulated and cropped prior to 23 December 1985 to the extent that it no longer exhibits important wetland functions (Section 512.15 of the National Food Security Act Manual, August 1988). PC crop lands are not subject to regulation under the jurisdiction of Section 404 of the Clean Water Act. Approximately 41 ha (102 ac) of PC crop land occur within hydric soil areas of the Site (Figure 3.6).

3.7 WATER QUALITY

Acre Swamp and tributaries in the Site vicinity maintain a state best usage classification of **C Sw NSW** (Stream Index No. 29-34-35-1-1) (DWQ 1998). Class **C** uses include aquatic life propagation and survival, fishing, wildlife, and secondary recreation. Secondary recreation refers to activities involving human body contact with water on an infrequent or incidental basis. These systems have also been assigned a "Nutrient Sensitive Waters" (NSW) supplemental classification, which requires limitations on future nutrient inputs that could be detrimental to water quality. In addition, the "Swamp Waters" (Sw) designation signifies systems which support low velocities and other natural characteristics, which are different from adjacent waters (DWQ 1998).

The Site consists of eroded crop land located adjacent to a network of drainage ditches and canals, including direct connectivity with a major drainageway (Acre Swamp). Fertilizers, pesticides, and nutrients associated with farming practices are expected to influence water quality in flows leaving the Site. Vegetated buffers adjacent to drainage ditches, which may serve as nutrient and chemical filtration strips, do not exist within the farm-fields. As such, runoff is expected to enter the unprotected drainage network and directly into nutrient sensitive waters of the Pamlico River.

The North Carolina Wetland Restoration Program (WRP) has developed a basinwide wetland and riparian restoration plan for the Tar-Pamlico River Basin, including watersheds that encompass the Site. The restoration plan identifies priority watersheds based on the need for restoration. Subsequently, sites within priority watersheds are evaluated to determine potential for restoration that contributes to goals established for the river basin. Primary restoration goals in the Tar-Pamlico River Basin include: 1) improvement of water quality; 2) increase in flood retention capacity; 3) improvement in wildlife habitat; and 4) increase in recreational opportunities.

The Site resides within the State, 14 digit sub-basin 03020104110010, within Hydrologic Unit (HU) # 4. This watershed to Acre Swamp is designated as a high priority sub-basin and a targeted HU for restoration use.

t

4.0 WETLAND RESTORATION STUDIES

4.1 GROUNDWATER MODELING

Groundwater modeling was performed to characterize water table elevations under historic (reference), existing, and post-restoration conditions. The groundwater modeling software selected for simulating shallow subsurface conditions and groundwater behavior at the Site is DRAINMOD. This model was developed by R.W. Skaggs, Ph.D., P.E., of North Carolina State University (NCSU) to simulate the performance of water table management systems.

4.1.1 Model Description

DRAINMOD was originally developed to simulate the performance of agricultural drainage networks on sites with shallow water table conditions. DRAINMOD predicts water balances in the soil-water regime at the midpoint between two drains of equal elevation. The model is capable of calculating hourly values for water table depth, surface runoff, subsurface drainage, infiltration, and actual evapotranspiration over long periods referenced to climatological data. The reliability of DRAINMOD has been tested for a wide range of soil, crop, and climatological conditions. Results of tests in North Carolina (Skaggs, 1982), Ohio (Skaggs *et al.* 1981), Louisiana (Gayle *et al.* 1985; Fouss *et al.* 1987), Florida (Rogers 1985), Michigan (Belcher and Merva 1987), and Belgium (Susanto *et al.* 1987) indicate that the model can be used to reliably predict water table elevations and drain flow rates. DRAINMOD has also been used to evaluate wetland hydrology by Skaggs *et al.* (1993). Methods for evaluating water balance equations and equation variables are discussed in detail in Skaggs (1980).

DRAINMOD was modified for application to wetland studies by incorporating a counter that accumulates the number of events wherein the water table rises above a specified depth and remains above that threshold depth for a given duration during the growing season. Required model inputs include: 1) precipitation data; 2) soil and surface storage parameters; 3) drain depth and spacing data; 4) hydraulic conductivity values; 5) evapotranspiration rates; 6) the threshold water table depth (25 cm [12 in]); 7) the required duration of high water tables (ex: 13 days); and 8) beginning and ending dates of the growing season. Typical ditch crosssections are depicted in Figure 4.1. The United States Department of Agriculture (USDA) soil texture classification, conductivity ranges, and number of days in the growing season were obtained from the NRCS soil survey for Beaufort County (USDA 1995). Inputs for soil parameters such as the water table depth/volume drained/upflux relationship, Green-ampt parameters, and the water content/matric suction relationship were obtained utilizing the MUUF computer program developed by USDA. DRAINMOD simulations were conducted for the time periods from 1956 to 1993, using the climatological record for Greenville, N.C.

Wetland hydrology is defined in the model as groundwater within 30 cm (12 inches) of the surface for 32 consecutive days during the growing season (12.5 percent of the growing season). Additional modeling for a wetland hydrology criteria of 13 consecutive days (5

4-1

percent of the growing season) was conducted to allow further analysis of wetland restoration potential. The growing season is defined as the period between 13 March and 25 November (256 days, USDA 1995). Wetland hydrology is achieved in the model if target hydroperiods are met for one half of the years modeled (i.e. 19 out of 38 years).

4.1.2 Model Applications and Results

DRAINMOD simulations were used to model: 1) the historic, reference wetland conditions (relatively undisturbed); 2) the hydroperiod exhibited by abandoned farmland immediately after ditches are effectively removed; and 3) the zone of wetland loss and degradation due to ditching under existing conditions. The models for reference and abandoned farmland are theoretical applications of DRAINMOD that will require field testing to substantiate predictions. The model was applied to Leaf and Muckalee soils which dominate the Site. Model applications and results are summarized below.

4.1.2.1 Reference Wetland Model

For development of reference wetland standards, modeling was performed to predict historic wetland hydroperiods (as percent of the growing season) in various undrained conditions. The reference model was developed by effectively eliminating the influence of ditching and forecasting the average hydroperiod over the number of years modeled. Two iterations were performed to evaluate changes in wetland hydroperiod between: 1) old field (post farmland) stages of wetland development; and 2) forested stages of wetland development.

Old field stages of wetland development were simulated by modifying soil drainage characteristics such as rooting functions in proximity to the B (clay) horizon, A horizon (plow layer) hydraulic conductivity, and water storage capacity within the plow layer. The old field model provides a hypothetical approximation of the potential hydroperiod exhibited immediately after drainage networks are removed.

Forested stages were modeled to predict wetland hydroperiods that may occur within reference (relatively undisturbed) wetlands in the region. The reference forest model may provide a projection of wetland hydroperiods and associated functions that may be achieved over the long term (10 + years) as a result of wetland restoration activities and steady state forest conditions. The steady state model application assumes increases in rooting functions, organic matter content, and water storage capacity relative to post-farmland periods.

Leaf Soils

The reference model predicts that, in Leaf soils, old field stages of wetland development exhibit an average wetland hydroperiod encompassing 8% of the growing season over the years modeled (Table 4.1). This average hydroperiod translates to free water within 0.3 m (1 ft) of the soil surface for a 21 day period extending from 21 March to 10 April. During the 38-year modeling period, reference wetland hydroperiods exhibited a range extending from

TABLE 4.1

and a second sec

DRAINMOD Results Reference Wetland Hydroperiods For Leaf Soil ABC Mitigation Site

	Number of Years Wetland Hydrology Achieved (38-year model period)	
Percent of Growing Season	Old Field Stage (immediately after backfilling and plugging ditches, relatively low surface water storage)	Forested Stages (10+ years after restoration, relatively high surface water storage)
4% (10 days)	34/38	37/38
6% (15 days)	28/38	37/38
8% (21 days)	21/38	35/38
10% (26 days)	12/38	33/38
12% (31 days)	7/38	32/38
14% (36 days)	5/38	31/38
16% (41 days)	1/38	28/38
18% (46 days)	1/38	26/38
20% (51 days)	0/38	22/38
22% (57 days)	0/38	17/38
24% (62 days)	0/38	12/38

less than 4% (4 out of 38 years) to more than 18% (1 out of 38 years) of the growing season, dependent upon rainfall patterns (Table 4.1).

As surface topography, rooting, roughness, and storage variables increase during successional phases, the model predicts that hydroperiods will increase to steady state forest conditions averaging a 20% wetland hydroperiod over the 38 years modeled (Table 4.1). The average hydroperiod translates to free water within 0.3 m (1 ft) of the soil surface for a 51 day period extending from 21 March to 10 May. Again, the hydroperiod ranges from less than 12% (6 years) to more than 24% (12 years) during the 38 year period dependent upon rainfall patterns. Therefore, the reference model suggests that groundwater fluctuations must be tracked within a reference wetland site to accurately assess a target hydroperiod for any given year.

As described above, the average wetland hydroperiod in Leaf soil is forecast to exhibit a gradual increase from 8% of the growing season immediately after drainage structures are removed to as much as 20% under steady state forest conditions. A gradual increase in hydroperiods may suggest that water storage capacity (rooting functions, organic materials/debris accumulation, microtopography, etc.) exhibits a significant effect on maintenance of wetland hydrology in precipitation driven wetlands. In old field stages of succession, accelerated runoff may occur within the former plow layer. For purposes of this preliminary model, runoff is assumed to occur at accelerated rates which reduce the influence of evapotranspiration on wetland hydrodynamics. If so, accelerated runoff will reduce amounts of available water within the soil surface layer along elevated flats and slopes in western portions of the Site. Consequently, periodic flooding or accelerated discharge into streams would be expected to occur at the lower end of the landscape gradient, along Acre Swamp. This accelerated drainage would be expected to decrease as successional vegetation colonizes the Site.

33

Because wetland hydroperiods during old field stages of wetland development are projected to extend for less than 12.5% of the growing season, wetland monitoring plans that extend for a five year period after restoration should utilize a minimum 5% wetland hydrology criteria to substantiate restoration success. Alternatively, hydroperiods within the restored wetland area may be tracked relative to the reference wetland, with success criteria stipulating that restored hydroperiods must exceed 40% of the hydroperiod exhibited by reference. The 40% threshold is established by dividing model predictions for old field stages of wetland development (8% projected hydroperiod) by model predictions for reference, steady state wetlands (20% projected hydroperiod).

Methods may be employed to increase complexity in the soil surface (A horizon plow layer) and the surface of the B (subsurface clay) horizon during restoration activities. These modifications, including woody debris deposition, soil scarification, and extensive deep harrowing (ripping), may increase water storage capacity across the surface of relatively impermeable layers (B horizon surface). If water storage is not adequately established during early stages of wetland development, marginal or non-wetland conditions may occur in

4-3

elevated (upslope) areas of the Site. Invariably, rooting influences on water storage capacity will require an extended period of forest development to establish (assumed at greater than 10 years).

Muckalee Soil

The reference wetland model predicts that, in Muckalee soils, old field stages of wetland development exhibit an average wetland hydroperiod encompassing 12% of the growing season over the years modeled (Table 4.2). This average hydroperiod translates to free water within 0.3 m (1 ft) of the soil surface for a 31 day period extending from 21 March to 20 April.

During forest development, the model predicts that hydroperiods will increase to steady state forest conditions averaging a 24% wetland hydroperiod over the 38 years modeled. The average hydroperiod translates to free water within 0.3 m (1 ft) of the soil surface for a 62 day period extending from 21 March to 20 May. Therefore, the average wetland hydroperiod is forecast to increase from 12% of the growing season immediately after drainage structures are removed and crop land is abandoned to as much as 24% under steady state forest conditions.

4.1.2.2 Wetland Degradation Model

The reference wetland model was utilized to forecast the maximum zone of ditch influence on reference wetland hydroperiods. The maximum zone of influence may be used to predict the area of wetland hydrological enhancement that may result due to effective ditch removal. In addition, the model provides an estimate of the area that may continue to be degraded in perpetuity by remaining ditches and canals used to drain adjacent properties. Ditch depths and spacing were varied in the model until wetland hydroperiods were reduced relative to the reference hydroperiods depicted in Table 4.1 and 4.2 (20% to 24% of the growing season).

In Leaf soils, the model predicts that a 1.2-m (4-ft) deep ditch exhibits a zone of influence on the reference wetland hydroperiod for 195 m (640 ft) in old field stages of wetland development (Table 4.3). As the site succeeds towards steady state forest conditions, the zone of potential wetland degradation due to a 1.2-m (4-ft) deep ditch is reduced due to projected, lower infiltration and runoff rates. The potential zone of degradation in forested conditions is forecast to extend 49 m (160 ft) into the wetland interior (Table 4.3). In effect, forest development exhibits a dampening effect on ditch influence over time, most likely resulting from increased rooting functions, surface/subsurface microtopography, increased organic matter content, and increased water storage across more complex wetland surfaces. Figure 4.2 provides a depiction of modeled wetland hydroperiods based on ditch depths and spacings under existing conditions.

TABLE 4.2

DRAINMOD Results Reference Wetland Hydroperiods For Muckalee Soil ABC Mitigation Site

Section 2.

and the second

	Number of Years Wetland Hydrology Achieved (38-year model period)	
Percent of Growing Season	Old Field Stage (immediately after backfilling and plugging ditches, relatively low surface water storage)	Forested Stages (10 + years after restoration, relatively high surface water storage)
10% (26 days)	27/38	34/38
12% (31 days)	21/38	33/38
14% (36 days)	15/38	32/38
16% (41 days)	9/38	30/38
18% (46 days)	4/38	26/38
20% (51 days)	1/38	26/38
22% (57 days)	1/38	25/38
24% (62 days)	1/38	21/38
26% (67 days)	0/38	14/38
DRAINMOD Results Zone of Wetland Loss and Wetland Degradation for Leaf Soil ABC Mitigation Site

(i	Old Field mmediately after backfill (relatively low s	ing and plugging ditche	es)		
	Wetland Hyd	roperiod (% of the grov	wing season)		
Depth (feet)	0-5%	5-8%	>8%		
(1661)	Z	one of Influence (feet)	*		
1	25	nc	na		
2	35	465	na		
3	45	555	na		
4	50	640	na		
5	55	nc	na		
	Forestec (10 + years af (relatively high s	ter restoration)			
	Wetland Hydroperiod (% of the growing season)				
Depth (feet)	0-5%	5-12.5%	12.5-20%		
(1001)	Zone of Influence (feet)*				
1	10	30	nc		
2	20	40	120		
3	20	50	150		
4	25	55	160		
5	30	.60	nc		

* Zone of influence equal to $\frac{1}{2}$ of the modeled ditch spacing nc: not calculated

na: not acheivable

DRAINMOD Results Zone of Wetland Loss and Degradation for Muckalee Soil ABC Mitigation Site

(in	Old Fiel Imediately after backfill (relatively low s	ing and plugging ditche	es)		
	Wetland Hyd	roperiod (% of the grow	ving season)		
Depth (feet)	0-5%	5-12%	>12%		
(1661)	Z	one of Influence (feet)*	e		
10	250	1465	na		
	Forestec (10+ years aft (relatively high s	ter restoration)			
	Wetland Hydroperiod (% of the growing season)				
Depth (feet)	0-5%	5-12.5%	12.5-24%		
	Z	one of Influence (feet)	*		
10	235	330	~1000		

* Zone of influence equal to $\frac{1}{2}$ of the modeled ditch spacing na: not acheivable

4.1.2.3 Wetland Loss Model

The wetland loss model was applied to determine which areas may not achieve wetland hydrology criteria (5% and 12.5% of the growing season) under existing and post-restoration conditions (Table 4.3 and Table 4.4). After conceptual restoration plans were developed, DRAINMOD was subsequently applied to determine the influences from remaining drainage networks on the Site or in the Site vicinity. Remaining drained sites are subsequently excluded from areas which provide wetland restoration potential.

In Leaf soils, DRAINMOD simulations for existing conditions indicate that portions of the prior converted (PC) crop land area are forecast to meet wetland hydrology criteria (5 % of the growing season) at distances of 8 m (25 ft) to 17 m (55 ft) from the existing drainage ditches (Table 4.3 and Figure 4.2). Muckalee soils are considered effectively drained throughout the Site due to the 3 m (10-ft depth) of the Acre Swamp channel and simulated drainage rates (Table 4.4 and Figure 4.2). Away from Acre Swamp, the remainder of agricultural fields are projected to support average hydroperiods ranging from 5% to 8% of the growing season under existing conditions.

In forested areas, removal of jurisdictional wetland hydrology (12.5%) by ditching in Leaf soils is localized (10 m [30 ft] to 20 m [60 ft] from the ditch) while degradation of historic wetland hydroperiods (12.5% to 20%) is more widespread (40 m [120 ft] to 53 m [160 ft] from the ditch) (Table 4.3). The 3-m (10-ft) deep Acre Swamp canal is simulated as draining the entire Muckalee soil map unit in forested areas as well (Table 4.4 and Figure 4.2). Therefore, riparian areas adjacent to the dredged stream are projected as never achieving wetland jurisdictional status unless the stream is modified throughout the watershed, including adjacent properties.

4.1.2.4 Post-Restoration DRAINMOD Results

Site alterations to restore wetland hydrology are expected to entail effective removal of drainage systems and re-introduction of surface and subsurface microtopography (Section 5.1). However, canals and ditches extending through hydric soils along the site periphery will remain open to prevent impacts to adjacent properties. Post-restoration groundwater modeling was applied to forecast wetland hydrology within the Site interior and near these perimeter canals. Primary drainage features consist of the Acre Swamp Canal, a drain along the northern property boundary, and ditches along the southern and western property boundaries.

Post-restoration DRAINMOD simulations were conducted for remaining open ditch segments under old field stages of wetland development (Figure 4.3) and forested stages of wetland development (Figure 4.4). These simulations include increases in projected surface storage ratings due to increased microtopography resulting from scarification, deep harrowing, and restoration of forest vegetation in wetland and upland buffer areas.

LEGEND APPROX. MITIGATION SITE BOUNDARY WOODS APPROX. CONTOUR 30- -- MAJOR CONTOUR HECTARES ACRES 21<u>+</u> 52± UPLAND. WETLAND HYDROLOGY HECTARES ACRES 25± 10± < 5% 37± 92<u>+</u> 5x-12.5x 12.5**x**-20**x** 1<u>+</u> 2<u>+</u> 6± 16± 20% (REFERENCE) TOTAL 75± 187±

33

AP

MAP COMPILED BY PHOTOGRAMMETRIC METHODS.

MAP COMPILED BY PHOTOGRAMMETRIC METHODS.

100 YEAR	25 YEAR	5 YEAR	CONFINED WITHIN 2 YEAR AND 30 11 10 10 10 10 10 10 10 10 10 10 10 10	CONFINED WITHIN CHANNEL BANKS 1 YEAR	FLOUD FREQUEINCY	FORESTED AREA 19± 46±	APPROX. MITIGATION SITE BOUNDARY					FIELD FIELD CROWNING		STORAGE SHED	Summer States	The second		APPROX. MITIGATION SITE BOUNDARY APPROX. CONTOUR APPROX. CONTOUR SITE BOUNDARY APPROX. CONTOUR EXISTING DITCHES AND CANALS FORESTED AREA 19± 46± FLOOD FREQUENCY CONFINED WITHIN CONFINED WITHIN CONFINED WITHIN CONFINED WITHIN CONFINED WITHIN CONFINED WITHIN SYEAR 10 YEAR 25 YEAR 50 YEAR	ACCESS RAA STORAGE SKED DET REALDING BARA BARA BARA BARA BARA BARA BARA BAR
		25 YEAR 	25 YEAR 	5 YEAR 	5 YEAR 10 YEAR 25 YEAR 50 YEAR	FLOOD FRECUCENCY Confined within channel banks 1 YEAR Confined within channel banks 2 YEAR 5 YEAR 10 YEAR 50 YEAR 50 YEAR	FORESTED AREA 19± 46± FLOOD FREQUENCY FLOOD FREQUENCY CONFINED WITHIN 1 YEAR CONFINED WITHIN 2 YEAR CONFINED WITHIN 2 YEAR 5 YEAR 10 YEAR 50 YEAR 50 YEAR	APPROX. MITICATION SITE BUNDARY APPROX. CONTOUR APPROX. CONTOUR APPROX. CONTOUR APPROX. CONTOUR KISTING. DITCHES AND CANALS FLOOD FREQUENCY CONFINED WITHIN 1 YEAR CONFINED WITHIN 2 YEAR 5 YEAR 50 YEAR 50 YEAR	APPROX.MITICATION APPROX.CONTOUR -30 - MAJOR CONTOUR -30 - MAJOR CONTOUR -30 - MAJOR CONTOUR -30 - MAJOR CONTOUR -30 - KISTING DITCHES MO CANALS FECTARES ACRES MO CANALS FECTARES ACRES FECTARES ACRES FECTARES FECTARES ACRES FECTARES ACRES FECTARES ACRES FECTARES ACRES FECTARES ACRES FECTARES ACRES FECTAR	LEGEND APPROX. MITEATION SITE BUNDARY	LEGEND MPROX.MITEATION	LEGEND MITPOX MILLEANN MARRON CONTOUR MILLEANNA MIL	LEGEND APPROX.CONTOUR 	LIGEND STROMARY		LEGEND STOCAL MILECTION STOCAL MILECTION STOC		MAP COMPILED BY PHOTOGRAMMETRIC METHODS.	

Table 4.5

house a second

Flood Frequency Analyses Water Surface Elevations for Different Flood Frequencies

					Return Interval	al		
Section	Description	1 Year	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
			Elev	/ation Above	Elevation Above Mean Sea Level [meters (ft)]	evel [meters	(ft)]	
APPR	50 ft upstream of SR 1532	5.4 (17.8)	5.7 (18.8)	6.3 (20.8)	6.7 (22.0)	7.1 (23.4)	8.0 (26.1)	8.9 (29.1)
SEC1	450 ft upstream of SR 1532	5.8 (19.0)	6.2 (20.2)	6.7 (22.1)	7.1 (23.3)	7.7 (25.2)	8.1 (26.5)	8.9 (29.2)
SECA	950 ft upstream of SR 1532	6.2 (20.3)	6.6 (21.5)	7.1 (23.4)	7.6 (24.8)	8.0 (26.4)	8.3 (27.2)	9.0 (29.4)
SEC3	1450 ft upstream of SR 1532	6.5 (21.4)	6.9 (22.7)	7.6 (24.9)	8.0 (26.3)	8.5 (28.0)	8.7 (28.4)	9.1 (29.7)
SEC4	1950 ft upstream of SR 1532	6.9 (22.5)	7.3 (23.8)	8.0 (26.1)	8.4 (27.6)	8.8 (28.9)	9.0 (29.4)	9.2 (30.2)
SEC5	2450 ft upstream of SR 1532	7.2 (23.5)	7.6 (24.9)	8.3 (27.3)	8.8 (28.8)	9.2 (29.9)	9.3 (30.4)	9.4 (31.0)
SECB	3150 ft upstream of SR 1532	7.5 (24.7)	8.0 (26.1)	8.7 (28.3)	9.2 (29.8)	9.4 (30.8)	9.5 (31.3)	9.7 (31.8)
SEC6	3650 ft upstream of SR 1532	7.8 (25.5)	8.2 (26.8)	8.7 (28.6)	9.1 (29.9)	9.4 (30.9)	9.6 (31.4)	9.7 (31.9)
SEC7	4150 ft upstream of SR 1532	8.0 (26.3)	8.4 (27.6)	8.8 (29.0)	9.2 (30.2)	9.5 (31.2)	9.7 (31.7)	9.8 (32.1)
SEC8	4650 ft upstream of SR 1532	8.3 (27.2)	8.7 (28.5)	9.1 (29.8)	9.3 (30.6)	9.6 (31.6)	9.8 (32.0)	9.9 (32.6)
SEC9	5150 ft upstream of SR 1532	8.6 (28.2)	9.0 (29.4)	9.4 (30.7)	9.6 (31.4)	9.8 (32.2)	10.0 (32.7)	10.1 (33.3)

Figure 4.3 (old field stage) suggests that approximately 37 ha (92 ac), composed primarily of former farmland, will support wetland hydrology from between 5% and 12.5% of the growing season. After forest development ensues (Figure 4.4), the Site will approach reference wetland conditions (20% of the growing season) within approximately 40 ha (100 ac). An additional, approximately 4 ha (11 ac) located in the outlying vicinity of remaining perimeter ditches will support average wetland hydroperiods between 5% and 20% of the growing season. Assuming that regulatory agencies allow wetland mitigation credit to be applied for conditions projected to occur after completion of the 5-year monitoring plan, this 44 ha (111 ac) area includes the extent of wetlands projected to be supported by the Site in perpetuity. The remaining, approximately 31 ha (76 ac) is projected to support upland buffers along remaining ditches and within nonhydric soil (upland) areas.

4.2 SURFACE WATER ANALYSES

Surface water analyses include: 1) modeling the frequency and extent of overbank flooding from Acre Swamp; and 2) analysis of ditch profiles extending from off-site drainage ditches into the Site interior. The analyses are designed to predict the extent of riverine influence on wetland hydrology due to overbank flooding along with appropriate procedures to minimize hydraulic impacts to adjacent properties.

4.2.1 Overbank Flood Model

The objective of developing the overbank flood model was to determine and compare the extent of flooding along Acre Swamp under existing and historic conditions. The results of the analyses were utilized to determine the potential for restoration of historic stream channel dimensions and adjacent riverine wetland systems.

The hydraulic analysis was performed using the Water Surface Profile Computational Model (WSPRO, Appendix B). The accuracy of model results were evaluated using Federal Emergency Management Agency (FEMA) studies within the Acre Swamp watershed immediately below the Site. The computer model was developed by establishing surveyed cross sections of the existing dredged channel and cross sections of the Acre Swamp valley from topographic mapping. Observations of existing hydraulic characteristics were incorporated into the model and computed water surface elevations were calibrated by utilizing engineering judgement. The historic and existing floodplain boundaries were further predicted by existing soil and landform characteristics along with comparison to FEMA studies within the lower watershed.

The hydraulic analysis indicates that, under existing conditions, there is negligible overbank flooding of Acre Swamp in its current dredged channel. Table 4.5 and Figure 4.5 depict the projected surface water elevations for the 1, 2, 5, 10, 50, and 100-year storm events. The higher frequency storms (less than 2-year return interval) and corresponding bankfull flows do not approach the land surface (former floodplain) elevations under current conditions. Therefore, overbank flooding does not represent a net contributor to wetland hydrology in floodplain portions of the Site.

The surface water profile for the 25-year storm is expected to range from 7.7 m (25.2 ft) to 9.8 m (32.2 ft) above MSL under existing conditions, extending across approximately 17 ha (43 ac) of land within the Site (Figure 4.5). Conversely, relict floodplain and soil features suggest that the 1-year to 2-year storm approached a similar flood elevation under historic conditions. Due to the major modification in overbank flood characteristics by dredging, modifications to the channel such as weir placement for riverine wetland restoration would not be contained within the boundaries of the Site. Additional flooding would be expected along Acre Swamp immediately adjacent to, and upstream of the Site, potentially inducing wide spread hydrologic trespass. Riverine wetland restoration would be expected to require excavation of a new floodplain at a lower elevation immediately adjacent to the existing canal.

4.2.2 Off-Site Drainage

Groundwater wetland restoration efforts will entail effective backfilling and plugging of ditches within the Site. However, drainage originating from adjacent properties flows through portions of, or along the boundary of the Site. Therefore, provisions must be made to accommodate off-site drainage while minimizing potential for impacts to adjacent properties.

Eight surface water flow infalls (ditches) reside along the boundary of the Site. These ditches have been labeled as Infall # 1 through # 8 in Figure 3.1. Infalls # 1, 2, 3, 7, and 8 discharge into ditches along the site periphery. Therefore, these perimeter ditches will be left open during wetland restoration efforts.

Infalls # 4, 5, and 6 discharge into ditches bisecting north-central sections of the property. These infalls are associated with a house and driveway located in the area. The driveway and adjacent ditch also serve as the primary access to the Site. Therefore, provisions for drainage of infalls # 4, 5, and 6 must be made within the Site interior. Infalls # 4, and 5 flow through a ditch bisecting the upper ridge portion of the groundwater slope (upland) area (Figure 3.1). The impact of this ditch on projected wetland functions is expected to be negligible as groundwater flows from the slope physiographic area are not significantly altered by the channel. Therefore, this central ditch will be left open under post-restoration conditions.

Infall # 6 flows through a ditch located along lower portions of the groundwater slope along the existing forest line. Significant discharge of groundwater has been noted flowing into the ditch, suggesting that near-surface groundwater flow has been intercepted along the lower slope prior to entry into the adjacent forested wetlands. Conversion of migrating groundwater to confined surface water flow is expected to have degraded wetland hydroperiods and associated functions in the forested area. Therefore, this ditch should be effectively eliminated to provide wetland enhancement benefits in the forested area.

Ditch profile measurements indicate that the ditch invert at Infall # 6 resides at approximately 9.1 m (30 ft) above MSL. Conversely, the central ditch invert that drains infalls #4, and 5 drops below 9.0 m (29 ft) approximately 244 m (800 ft) below the confluence of infalls with

the Site boundary. Therefore, Infall #6 may be diverted to the south and connected to the central ditch. Detailed procedures for accommodating the off-site drainage is included in Section 6.0 (Mitigation Plan).

4.3 REFERENCE WETLAND STUDIES

A reference wetland system has been utilized as the primary method for development of this wetland restoration plan. The primary reference wetland, as depicted in Figure 3, is located in the northwestern section of the Site. Additional reference areas were evaluated to the north and south of the Site, along similar landscape positions supporting Leaf and Bayboro soils in the area. The primary reference wetland will be utilized to supplement the monitoring plan as a comparison between relatively undisturbed wetlands and adjacent, restored wetland areas. Reference wetland studies included: 1) groundwater data analyses; 2) soil surface characterization; and 3) vegetation sampling.

4.3.1 Groundwater Data Analyses

During well installation efforts, two continuous recording wells were installed in reference and 12 wells were installed in potential restoration areas. The data was collected periodically from November 6, 1998 through April 4, 1999 and compared between the two systems. In addition, 27 systematic soil borings were taken in the reference wetland during the groundwater sample period to evaluate changes in water table elevations across portions of the reference landscape. Comprehensive well data is contained in Appendix A; Table 3.1 depicts water table measurements at periodic intervals during the sample period.

In November, groundwater remained relatively consistent within reference and restoration areas at an average depth of 1 m (3.4 ft) below the soil surface. In December, groundwater tables elevated, on average, to within 0.6 m (2 ft) of the soil surface throughout the area. In January, a majority of the wells in both reference and the restoration area elevated to within 1 ft of the soil surface. In the restoration area, groundwater draw-down occurred rapidly after each rainfall event, approaching the surface for, on average, a three- to seven-day cycle after significant rainfall events. However, reference wells remained saturated or inundated from 26 December 1998 through 4 April 1999.

Soil borings adjacent to the reference wells in early April 1999 indicated that saturation to within 0.3 m (1 ft) of the surface persisted throughout the reference area including significant variation based on surface microtopography. The variation in water table depths was most pronounced between hummocks and depressions in the reference area. Therefore, soil surface cross-sections and profiles were prepared to evaluate the relationship between depth to groundwater and microtopography between reference monitoring wells and soil borings (Section 4.3.2).

4.3.2 Soil Surface Characterization

Wetland surface microtopography was evaluated in reference wetlands by measuring changes in relief across local reaches of the landscape. In Leaf soils, depressional storage associated with microtopography appears to play an important role in wetland hydrology and function. Microtopography was measured through the use of a laser level tied to well elevations in the reference area.

Surface topography varies across a 131 m (430 ft) cross-section from 0.3 m (1 ft) above the groundwater table to 0.2 m (0.8 ft) below the groundwater table. Within the interior reference wetland area, depressional areas are generally spaced at distances ranging from 9 m (30 ft) to 30 m (100 ft) between hummocks and flats. The depressions ranged from 6 m (20 ft) to 21 m (70 ft) in width and averaged approximately 0.2 m (0.7 ft) in maximum depth. The area of depressional storage per depression averaged 3.7 m² (40 ft²). The depressional areas also support an increased accumulation of organic matter, with sphagnum mosses and characteristic swamp forest species dominating the inundated areas.

4.3.3 Vegetation Sampling

In order to establish a forested wetland system for mitigation purposes, a reference community needs to be established. According to Mitigation Site Classification (MiST) guidelines (EPA 1990), the area of proposed restoration should attempt to emulate a Reference Forest Ecosystem (RFE) in terms of soils, hydrology, and vegetation. In this case the target RFEs were composed of relatively undisturbed woodlands within the Site which support soil, landform, and hydrological characteristics that restoration will attempt to emulate. All of the RFE sites were impacted by selective cutting or high grading, therefore the species composition of these plots should be used as a guide only. Reference forest data used in restoration was modified to emulate steady state, climax community structure as described in the <u>Classification of the Natural Communities of North Carolina</u> (Schafale and Weakley 1990).

Reference plots within three distinct landscape positions (riverine floodplains, groundwater slopes, and precipitation flats) were identified in mature forested areas that characterize the communities proposed for mitigation. Circular plot sampling was utilized in data collection. Sites were chosen that best characterize expected steady-state forest composition. Species were recorded along with individual tree diameters, canopy class, and dominance. From collected field data, importance values (Brower *et al.* 1990) of dominant trees were calculated. The composition of shrub/sapling and herb strata were recorded and identified to species. The vegetative communities targeted include riverine swamp forest (Blackwater Subtype), mesic hardwood forest, and nonriverine wet hardwood forest (Schafale and Weakley 1990). Soils targeted for each community include Leaf, Muckalee and Lenoir (USDA 1990).

- Riverine Swamp Forest: Three plots from on-site and three plots from a regional data 1. The overstory is dominated by sweetgum (Liquidambar base were sampled. styraciflua) (Importance value [IV] 25%), red maple (Acer rubrum), (23%), willow oak (Quercus phellos) (12%), laurel oak (Quercus laurifolia) (9.9%), swamp tupelo (Nyssa biflora) (6%), water oak (Quercus nigra) (5%), swamp chestnut oak (Quercus michauxii) (5%), American holly (Ilex opaca) (5%) (Table 4.6). Other species include bald cypress (Taxodium distichum) (13%), American elm (Ulmus americana), red bay (Persea palustris), green ash (Fraxinus pennsylvanica), Tulip poplar (Liriodendron tulipifera), and sweet bay (Magnolia virginiana), white oak (Quercus alba). The sapling/shrub layer is open and dominated by red maple, sweet pepper bush (Clethra alnifolia), green ash, American holly, swamp chestnut oak, and sweet bay. The herbaceous layer is generally sparse and dominated by Japanese honeysuckle (Lonicera sempervirens), leucothoe (Leucothoe axillaris), giant cane (Arundinaria gigantea), Virginia chain-fern (Woodwardia virginica), and greenbriers (Smilax spp.).
- 2. <u>Mesic Hardwood Forest:</u> Two on-site plots were sampled. These plots represent the wetter end of this community type. The overstory dominants are laurel oak (IV 17%), sweet gum (16%), water oak (15%), sweet bay (10%), swamp chestnut oak (9%), red maple (8%), loblolly pine (*Pinus taeda*) (7%), American beech (*Fagus grandifolia*) (5%), and tulip poplar (5%) (Table 4.7). Other species found in the overstory are shagbark hickory (*Carya ovata*), cherrybark oak (*Quercus pagoda*), and white oak. The common sapling/shrub species include red maple, sweet pepper bush, Titi (*Cyrilla racemosa*), horse sugar (*Symplocus tinctoria*), blueberry (*Vaccinium* spp.), ink-berry (*Ilex glabra*), and sweet bay. Herbaceous species include giant cane, Fetter-bush (*Lyonia lucida*), crane-fly orchid (*Tipularia discolor*), and Carolina jasimine (*Gelsemium sempervirens*).
- 3. <u>Nonriverine Wet Hardwood Forest:</u> Two plots from on-site and four plots from a regional data base were sampled. The overstory is dominated by willow oak (importance value [IV] 19%), sweet gum (19%), swamp chestnut oak (11%), red maple (10%), American holly (9%), water oak (8%), tulip poplar (7%), laurel oak, and swamp tupelo (5%) (Table 4.8). Other species found in the overstory include American beech (*Fagus grandifolia*), red bay, sweet bay, swamp tupelo, cherrybark oak, loblolly pine, and bald cypress. The sapling/shrub layer is characterized by American holly, Chinese privet (*Ligustrum sinense*), sweet pepper bush, and red bay. A sparse herbaceous layer include Japanese honeysuckle, giant cane, and sedges (*Carex* spp.).

All sites exhibited evidence of past silvicultural practices such as selective cutting, highgrading, and ditch construction which has resulted in a less diverse, intra-specific tree assemblage. Degradation of nonriverine wet hardwood forests is common throughout the region. Therefore, community restoration procedures will be modified to facilitate a reduction in dominance by disturbance adapted species such as red maple and sweet gum. RFE sampling has established a baseline data set that will be integrated into a planting plan for the mitigation

SECTOR D

in a straight of the second se

Riverine Swamp Forest Plots Summary (Canopy Species)

Species	Den	Density	Basal	Basal Area	Relative Density	Relative Basal	Importance Value
	tress/ha	trees/acre	sq.m/ha	sq. ft/acre		Area	
Sweetaiim	388	143	12.7	55.4	26.4	22.6	24.5
Red Manle	352	130	12.2	53.3	23.9	21.7	22.8
Willow Oak	154	57	7.1	31.0	10.4	12.6	11.5
l aurel oak	36	13	9.8	42.5	2.5	17.3	9.9
Swamn Tunelo	81	30	3.2	14.0	5.5	5.7	5.6
Water Oak	108	40	1.9	8.5	7.4	3.5	5.4
Swamn Chestnut Oak	81	30	2.9	12.5	5.5	5.1	5.3
American Hollv	108	40	1.7	7.5	7.4	3.1	5.2
Rald Cvnress	27	10	2.7	11.8	1.8	4.8	3.3
American Flm	18	7	1.3	5.5	1.2	2.2	1.7
Red Bav	45	17	0.1	0.6	3.1	0.2	1.6
Green Ash	27	10	0.3	1.5	1.8	0.6	1.2
Tulip Poplar	18	2	0.2	0.7	1.2	0.3	0.8
Sweet Bay	18	7	0.2	0.7	1.2	0.3	0.8
White Oak	ი	ю	0.1	0.1	0.6	0.1	0.3
Total	1084	400	43.7	190.1	100	100	100

¹ Importance value = (Relative Density + Relative Basal Area)/2*100

No. of the second s

A State of the second second

and a second second

La esta de la companya de la company La companya de la comp

Reference Forest Ecosystem Mesic Upland Slope Forest Plots Summary (Canopy Species)

Species	Density	sity	Basal	Basal Area	Relative Density	Relative Basal	Importance Value
	tress/ha	trees/acre	sq.m/ha	sq. ft/acre		Area	
Laurel Oak	129	50	8.6	33.7	11.8	22.7	17.2
Sweetaum	173	70	5.7	22.3	16.5	15.0	15.7
Water Oak	136	55	6.7	26.1	12.9	17.6	15.3
Sweet Bay	148	60	2.1	8.2	14.1	5.5	9.8
Swamp Chestnut Oak	<u> </u>	40	3,6	14.0	9.4	9.4	9.4
Red Maple	136	55	1.5	5.8	12.9	3.9	8,4
Loblolly Pine	37	15	4.0	15.8	3.5	10.6	7.1
American Beech	74	30	1.3	5.2	7.1	3.5	5.3
Tulip Poplar	49	20	1.9	7.3	4.7	4.9	4.8
Shaqbark Hickory	25	10	1.3	5.0	2.4	3.3	2.8
Cherrybark Oak	25	10	0.8	3.3	2.4	2.2	2.3
White Oak	25	10	0.4	1.7	2.4	1.2	1.8
Total	1051	425	37.8	148.6	100	100	100

¹ Importance value = (Relative Density + Relative Basal Area)/2*100

and a second second

Reference Forest Ecosystem Nonriverine Wet Hardwood Forest Plots Summary (Canopy Species)

Species	Den	Density	Basal	Basal Area	Relative Density	Relative Basal	Importance Value
	tress/ha	trees/acre	sq.m/ha	sq. ft/acre		Area	
Willow oak	111	45	5.3	23.2	14.3	24.1	19.2
Sweetoum	198	80	2.7	11.6	25.4	12.1	18.7
Swamp Chestnut Oak	62	25	3.2	13.7	7.9	14.2	11.1
Bed Manle	117	48	1.1	4.7	15.1	4.9	10.0
American Hollv	63 03	38	1.5	6.6	11.9	6.8	9.4
Water Oak	74	30	1.5	6.4	9.5	6.6	8.1
Tulin Poplar	25	10	2.3	10.2	3.2	10.5	6.9
l aurel Oak	25	10	2.1	9.0	3.2	9.3	6.3
American Beech	19	8	1.4	6.2	2.4	6.4	4.4
Red Bav	31	13	0.1	0.4	4.0	0.4	2.2
Sweet Bav	12	2	0.4	1.7	1.6	1.7	1.7
Swamp Tupelo	9	с	0.3	1.5	0.8	1.6	1.2
Bald Cypress	9	e	0.3	1.3	0.8	1.4	1.1
Total	778	315	22.2	96.5	100	100	100

¹ Importance value = (Relative Density + Relative Basal Area)/2*100

5.0 MITIGATION PLAN

5.1 WETLAND HYDROLOGY AND SOIL RESTORATION

Site alterations designed to restore characteristic wetland soil features and groundwater wetland hydrology include: 1) access road improvements; 2) off-site drainage redirection; 3) ditch cleaning prior to backfill; 4) depression construction; 5) impervious ditch plug construction; 6) ditch backfilling; and 7) crown removal (Figure 5.1).

5.1.1 Access Road Improvements

2.4.8

1

The primary access road to the Site represents a driveway to the adjacent private residence along the northwestern property boundary (Figure 5.1). This road may require minor improvements to support construction traffic during the implementation period. In addition, the access road may be utilized during the wetland monitoring period and by land managers of the wetland area in perpetuity. Access road improvements may be performed concurrently with the off-site drainage redirection.

5.1.2 Off-Site Drainage Redirection

Off-site drainage will be accommodated at two locations along the periphery of the Site (Figure 5.1). Along the southwest corner, approximately 76 linear m (250 linear ft) of ditch channel will be constructed to connect peripheral ditches flowing to the north and east. The ditch will connect existing channels averaging approximately 2.4 m (6 ft) wide by 0.9 m (3 ft) deep.

Along the northwestern property boundary, drainage will be redirected along an approximately 91 m (300 ft) length of ditch located adjacent to the private residence (Figure 5.1). Figure 5.2 depicts a plan view of the drainage redirection, including ditch construction on new location, and re-sloping of the existing channel to provide for adequate drainage. This drainage redirection and ditch modifications will also facilitate improvements to the access road described above.

5.1.3 Ditch Cleaning Prior to Backfill

Ditches identified for backfilling in Figure 5.1 will be cleaned, as needed, to remove unconsolidated sediments within the lower portion of the cross-section. As depicted in Figure 3.3 (Typical Soil Profile), and Figure 4.1 (Typical Ditch Cross-Sections), accumulated sediment within the ditches represents relatively high permeability material that may act as a conduit for continued drainage after restoration. The unconsolidated sediments will be lifted from the channel to expose the underlying, relatively impermeable clay substrate along the ditch invert. The sediment will be temporarily placed on adjacent surfaces during depression construction and ditch backfilling. Subsequently, the unconsolidated sediment will be incorporated into top soils graded during field crown removal.

5.1.4 Depression Construction

Depressions will be constructed along ditch sections to mimic the Bayboro (nonriverine swamp forest) depressions identified in reference wetlands. The primary purpose of these depressions is to provide suitable, low permeability material for ditch plugs and backfilling, to increase water storage potential within the wetland restoration area, and to increase potential for biological diversity within the complex.

Based on volume calculations for backfill material, approximately 29 depressions will be constructed in the landscape (Figure 5.1). The depressions average 30 m (100 ft) in width and 60 m (200 ft) in length, centered along the existing ditches (Figure 5.3). The area covered by each nonriverine swamp forest depression ranges from 0.12 ha (0.3 ac) to 0.20 ha (0.5 ac) in size. The depression will be constructed by excavating and stockpiling top soils overlying the B Horizon (clay layer) surface. Subsequently, clays will be excavated to a depth of approximately 1.2 m (4 ft) below the soil surface and utilized as backfill material on adjacent ditch sections. Subsequently, the top soils and adjacent field crowns will be utilized to backfill the depression to within 0.1 m (0.3 ft) to 0.3 m (1 ft) of the surface. The pool will be contoured to provide for approximate 8:1 slopes upon completion.

Figure 5.1 provides a conceptual depiction of pool locations. The location, depth, and configuration of each pool will be modified during construction to maximize landscape diversity, provide varying pool depths throughout the Site, and to balance cut and fill needs for ditch backfilling and plug construction.

5.1.5 Ditch Plugs

Impermeable plugs will be installed along drainage ditches and canals at locations identified in Figure 5.1. Approximately 40 plugs will be placed immediately below the constructed depressions or prior to ditch outfall into Acre Swamp. The plugs will consist of low permeability materials excavated from the adjacent depressions. The plugs will consist of a core of impervious material and be sufficiently wide and deep to form an imbedded overlap in the existing ditch banks and ditch bed (Figure 5.4).

5.1.6 Ditch Backfilling

Ditches located between the constructed depressions and impermeable ditch plugs will be back-filled with clay-based material excavated from the depressions (Figure 5.1). Approximately 5770 m (18,920 ft) of ditches will be filled, graded, and compacted to the approximate elevation of the adjacent wetland surface.

5.1.7 Crown Removal

Field crowns located between ditches will be graded towards the ditches to establish localized, enclosed hummocks and depressions across the landscape (Figure 5.1). Currently, ditch corridors represent long, linear corridors that reside up to 0.15 m (0.5 ft) below the elevation of inter-field crowns. Figure 5.5 provides a conceptual depiction of existing surface topography and approximate target elevations after the crowns are effectively removed. The crowns will be graded towards the depressions and backfilled ditches under supervision of

Note:

Excavated clay (B-horizon) from constructed depressions will be used to fill and plug ditches. Existing crown between ditches will be excavated and redistributed over the site (including constructed depressions) to the target range of surface elevations. Localized surface micro-topography (eg. hummocks, troughs, and swales) will be achieved through circular and irregular plowing of finished grade.

Typical Cross-section: Post-Restoration Soil Surface ABC MITIGATION SITE Beaufort County, North Carolina

-		an da an	
- - -			
			-
****	'		Ч
	<u> </u>		
	~!~		
	1		
	i		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m	(200 ft)		
61 m			
61 m	Figure:	5.5	
61 m			
61 m	Figure:	5.5	

a qualified wetland scientist. The material will be used to establish enclosed, circular to irregularly shaped microtopographic enclosures through circular to irregular plowing and soil harrowing / scarification to finished grade.

Reference wetlands exhibit complex surface microtopography. Small concavities, swales, exposed root systems, and hummocks associated with vegetative growth and hydrological patterns are scattered throughout the system. Large woody debris and partially decomposed litter provide additional complexity across the wetland soil surface. Although vegetative components of surface storage capacity will not develop in restored wetlands for several decades, efforts to advance the development of characteristic surface roughness will be implemented on the Site. As stated above, disking and harrowing will be implemented as part of the crown removal effort to promote the formation of non-linear, hummocks and concavities that act to increase surface storage and provide micro-habitat for invertebrates, reptiles, and amphibians. After scarification, the soil surface should exhibit complex microtopography ranging to approximately 0.3 m (1 ft) in vertical asymmetry across local reaches of the landscape. Restored microtopographic relief is considered critical to hydrology restoration efforts. Therefore, a harrow plow or deep disking plow will be implemented to ensure adequate surface roughing and surface water storage potential. Subsequently, vegetative restoration will be initiated on scarified wetland surfaces.

5.2 WETLAND COMMUNITY RESTORATION

Restoration of wetland forested communities provides habitat for area wildlife and allows for development and expansion of characteristic wetland dependent species across the landscape. Ecotonal changes between community types contribute to diversity and provide secondary benefits, such as enhanced feeding and nesting opportunities for mammals, birds, amphibians, and other wildlife.

RFE data, on-site observations, utilization of Schafale and Weakley classification of natural communities, and a review of the available literature were used to develop the primary plant community associations that will be established during community restoration activities. These community associations include: 1) levee/stream bank forest; 2) nonriverine swamp forest; 3) riverine swamp forest; 4) nonriverine wet hardwood forest; 5) mesic upland slope forest; and 6) dry mesic oak/hickory forest. Figure 5.6 provides a conceptual depiction of potential forest communities to be restored. Figure 5.7 identifies the location of each target community on the Site.

Emphasis has been focused on developing a diverse plant assemblage. This is particularly vital due to the limited distribution of mast-producing hardwood tree species presently existing in the region, as evidenced during the RFE search. Planting a variety of mast-producing species will provide a food source for wildlife and will facilitate habitat diversity in a region dominated by monotypic pine plantations.

5-3

The restoration of upland forest communities within the wetland complex is also proposed. Upland forest restoration plans will enhance wetland functions and restore a wetland/upland forest ecotone that is considered uncommon in the region.

5.2.1 Planting Plan

The planting plan consists of: 1) acquisition of available wetland species; 2) implementation of proposed surface topography improvements; and 3) planting of selected species. The COE bottomland hardwood forest mitigation guidelines (DOA 1993) were utilized in developing this plan.

Species selected for planting will be dependent upon availability of local seedling sources. Advance notification to nurseries (1 year) will facilitate availability of various non-commercial elements. Appropriate species names and the primary soil types by community are listed below.

Levee/Riparian Stream Bank Forest

Primary Soil Map Unit: Muckalee (Typic Fluvaquents)

- 1. American Elm (Ulmus americana)
- 2. Pumpkin Ash (*Fraxinus profunda*)
- 3. River Birch (*Betula nigra*)
- 4. Willow Oak (Quercus phellos)
- 5. Laurel Oak (Quercus laurifolia)
- 6. Bald Cypress (*Taxodium distichum*)
- 7. Swamp Tupelo (Nyssa biflora)
- 8. Overcup Oak (Quercus lyrata)
- 9. Buttonbush¹ (Cephalanthus occidentalis)
- 10. Tag Alder¹ (Alnus serrulata)
- 11. Black Willow¹ (*Salix nigra*)
- 1: Buttonbush seedlings, tag alder seedlings, and black willow stakes will be placed along the stream banks of Acre Swamp only.

Riverine Swamp Forest

Primary Soil Map Unit: Muckalee (Typic Fluvaquents)

- 1. Bald Cypress (*Taxodium distichum*)
- 2. Swamp Tupelo (Nyssa biflora)
- 3. Overcup Oak (Quercus lyrata)
- 4. Carolina Ash (*Fraxinus caroliniana*)
- 5. Swamp Cottonwood (Populus heterophylla)
- 6. Water Hickory (*Carya aquatica*)
- 7. Green Ash (*Fraxinus pennsylvanica*)
- 8. Laurel Oak (Quercus laurifolia)
- 9. Willow Oak (Quercus phellos)
- 10. Swamp Chestnut Oak (Quercus michauxii)

Mesic Upland Slope Forest

Primary Soil Map Unit: Lenoir (Aeric Paleaquults)

- 1. Green Ash (Fraxinus pennsylvanica)
- 2. Swamp Chestnut Oak (Quercus michauxii)
- 3. Cherrybark oak (*Quercus pagoda*)
- 4. Tulip Poplar (*Liriodendron tulipifera*)
- 5. American Beech (Fagus grandifolia)
- 6. White Oak (*Quercus alba*)
- 7. Red oak (*Quercus rubra*)
- 8. Shagbark Hickory (Carya ovata)
- 9. Pignut Hickory (Carya glabra)
- 10. Southern Sugar Maple (Acer saccharum)

Nonriverine Wet Hardwood Forest

Primary Soil Map Unit: Leaf (*Typic Albaquults*)

- 1. American Elm (*Ulmus americana*)
- 2. Willow Oak (Quercus phellos)
- 3. Laurel Oak (*Quercus laurifolia*)
- 4. Swamp Tupelo (*Nyssa biflora*)
- 5. Green Ash (*Fraxinus pennsylvanica*)
- 6. Swamp Chestnut Oak (Quercus michauxii)
- 7. Water Oak (Quercus nigra)
- 8. Cherrybark Oak (Quercus pagoda)
- 9. Tulip Poplar (*Liriodendron tulipifera*)

Nonriverine Swamp Forest

Primary Soil Map Units: Leaf (Typic Albaquults)

- 1. American Elm (*Ulmus americana*)
- 2. Laurel Oak (Quercus laurifolia)
- 3. Bald Cypress (*Taxodium distichum*)
- 4. Swamp Tupelo (*Nyssa biflora*)
- 5. Overcup Oak (*Quercus lyrata*)
- 6. Green Ash (Fraxinus pennsylvanica)
- 7. Swamp Chestnut Oak (Quercus michauxii)
- 8. Water Oak (*Quercus nigra*)
- 9. Cherrybark Oak (Quercus pagoda)
- 10. Pond Cypress (Taxodium ascendens)

Dry Mesic Oak/Hickory Forest

Primary Soil Map Units: Lenoir (Aeric Paleaquults)

- 1. White Oak (Quercus alba)
- 2. Spanish Oak (Quercus falcata)

- 3. Pignut Hickory (Carya glabra)
- 4. Mockernut Hickory (Carya tomentosa)
- 5. Swamp Chestnut Oak (*Quercus michauxii*)
- 6. Cherrybark Oak (Quercus pagoda)
- 7. American Beech (Fagus grandifolia)
- 8. Red Oak (*Quercus rubra var. rubra*)
- 9. Black gum (Nyssa sylvatica)

83

Two levels of planting will be used, Full and Supplemental. Full Planting will occur in the cultivated areas, currently void of any trees. Bare-root seedlings of tree species will be planted randomly within specified map areas at a density of 1680 stems per ha (680 stems per ac) on 2.4-m (8-ft) centers. Shrub plantings of buttonbush, tag alder, and black willow will be placed on 1.2 m (4-ft) centers, as bank stabilization elements, in four contiguous rows along the stream banks of Acre Swamp. Table 5.1 depicts the total number of stems and species distributions within each Full Planting vegetation association.

Supplemental Planting will occur in existing forested areas to ameliorate current plant community deficiencies. Bare-root seedlings of tree species will be planted in tree gaps within specified map areas at a density of 270 stems per ha (110 stems per ac). Table 5.2 depicts the total number of stems and species distributions within each Supplemental Planting vegetation association.

Planting will be performed between December 1 and March 15 to allow plants to stabilize during the dormant period and set root during the spring season. Opportunistic species, which typically dominate disturbed forests, have been excluded from initial community restoration efforts. Opportunistic species such as sweet gum, red maple, loblolly bay, loblolly pine, American sycamore, black willow, long leaf pine, and pond pine may become established. However, to the degree that species diversity is not jeopardized, these species should be considered important components of steady-state forest communities.

TABLE 5.1

Stocking Levels (Full Planting Areas) ABC Wetland Mitigation Site

Vegetation Association (Planting Area)	Levee/ Stream Bank Forest	Riverine Swamp Forest	Mesic Upland Slope Forest	Nonriverine Wet Hardwood Forest	Nonriverine Swamp Forest	Dry Mesic Oak/Hickory Forest	TOTAL
Area (ha [ac])	2.3 (5.7)	8.1 (20.0)	8.0 (19.8)	27.1 (67.0)	4.0 (9.8)	7.4 (18.4)	56.9 (140.7)
SPECIES	# planted ¹ (% total) ²	# planted (% total)	# planted (% total)	# planted (% total)	# planted (% total)	# planted (% total)	# planted (%total)
Pumkin Ash	890 (10)						890
American Elm	890 (10)			4,550 (10)	680 (10)		6,120
River Birch	1,780 (20)						1,780
Willow Oak	890 (10)	680 (5)		2,280 (5)			3,850
Laurel Oak	890 (10)	680 (5)		6,830 (15)	1,010 (15)		9,410
Bald Cypress	890 (10)	2,040 (15)			1,010 (15)		3,940
Swamp Tupelo	890 (10)	2,040 (15)	- -	4,550 (10)	1,340 (20)		8,820
Overcup Oak	1,780 (20)	2,040 (15)		2,280 (5)	340 (5)		6,440
Button Bush⁴	1300 ()4						1,300
Tag Alder⁴	1300 ()⁴						1,300
Black Willow⁴	1300 ()⁴						1,300
Carolina Ash		1,360 (10)					1,360
Swamp Cottonwood		1,360 (10)					1,360
Water Hickory		1,360 (10)					1,360
Green Ash		1,360 (10)	670 (5)	4,550 (10)	340 (5)		6,920
Swamp Chestnut Oak		680 (5)	2,020 (15)	6,830 (15)	680 (10)		10,210
Water Oak				2,280 (5)			2,280
Pond Cypress					1,010 (15)		1,010
Cherrybark Oak			2,020 (15)	6,830 (15)	340 (5)	740 (10)	9,930
Tulip Poplar			1,340 (10)	4,550 (10)			5,890
American Beech			2,690 (20)			740 (10)	3,430
White oak			670 (5)			1,480 (20)	2,150
Red Oak			670 (5)		· ·	1,110 (15)	1,780
Southern Sugar			670 (5)	L		ļ	670
Shagbark Hickory			1,340 (10)				1,340
Pignut Hickory			1,340 (10)		- 2	1,110 (15)	2,450
Spanish Oak						740 (10)	740
Mockernut Hickory						1,110 (15)	1,110
Blackgum					<u> </u>	370 (5)	370
TOTAL	12,800	13,600	13,430	45,530	6,750	7,400	99,510

Full planting densities comprise of 1680 trees per hectare (680 trees/acre) within each specified planting area.

Some non-commercial elements may not be locally available at the time of planting. The stem count for unavailable species should be distributed among other target elements based on the percent (%) distribution. One year of advance notice to forest nurseries will promote availability of some non-commercial elements. However, reproductive failure in the nursery may occur.

Scientific names for each species, required for nursery inventory, are listed in the mitigation plan.

Shrub elements, including button bush, tag alder, and black willow will be planted along the banks of Acre Swamp only.

*

3:

1:

2:

4.

TABLE 5.2

Stocking Levels (Supplemental Planting Areas) **ABC Wetland Mitigation Site**

Vegetation Association (Planting Area)	Levee/ Stream Bank Forest	Riverine Swamp Forest	Mesic Upland Slope Forest	Nonriverine Wet Hardwood Forest	Nonriverine Swamp Forest	Dry Mesic Oak/Hickory Forest	TOTAL
Area (ha [ac])	0.6 (1.4)	5.6 (13.8))	3.0 (8.0)	7.0 (18.0)	na⁴	1.9 (4.7)	18.1 (45.9)
SPECIES ³	# planted ¹ (% total) ²	# planted (% total)	# planted (% total)	# planted (% total)	# planted (% total)	# planted (% total)	# planted (%total)
Pumkin Ash	30 (15)						30
American Elm	20 (10)			730 (10)			750
River Birch	20 (10)					L	20
Willow Oak	20 (10)	80 (5)			20 (10)		120
Laurel Oak	20 (10)	80 (5)		1,100 (15)	20 (10)		1,220
Bald Cypress	20 (10)	230 (15)			60 (25)		310
Swamp Tupelo	30 (15)	230 (15)		1,100 (15)	50 (20)		1,410
Overcup Oak	40 (20)	230 (15)		370 (5)			640
Carolina Ash		150 (10)					150
Swamp Cottonwood		150 (10)					150
Water Hickory		150 (10)			<u> </u>		150
Green Ash		150 (10)	100 (10)	730 (10)			980
Swamp Chestnut Oak		80 (5)	290 (15)	730 (10)	30 (15)		1,130
Water Oak				730 (10)			730
Pond Cypress					50 (20)		50
Cherrybark Oak			290 (15)	1,100 (15)		50 (10)	1,440
Tulip Poplar			190 (10)	730 (10)			920
American Beech			380 (20)			50 (10)	430
White oak			100 (5)			100 (20)	200
Red Oak			100 (5)			80 (15)	180
Southern Sugar			100 (5)			_	100
Shagbark Hickory			190 (10)				190
Pignut Hickory			190 (10)			80 (15)	270
Spanish Oak						50 (10)	50
Mockernut Hickory	an share a area					80 (15)	80
Blackgum			an a	· · · · ·	and a second s	30 (5)	30
TOTAL	200	1,530	1,930	7320	230	520	11,730

Supplemental planting densities comprise of 270 trees per hectare (110 trees/acre) within each specified planting area. Some non-commercial elements may not be locally available at the time of planting. The stem count for unavailable species should be distributed among other target elements based on the percent (%) distribution. One year of advance notice to forest nurseries will promote availability of some non-commercial elements. However, reproductive failure in the nursery may occur.

Scientific names for each species, required for nursery inventory, are listed in the mitigation plan.

1:

2:

3:

4:

The supplemental planting for this unit is not expressly separated from nonriverine wet hardwood. However, depressions within this unit would benefit from planting nonriverine swamp forest species (approximately 0.8 ha).

6.0 MONITORING PLAN

The Monitoring Plan will consist of a comparison between hydrology model predictions and regulatory wetland criteria, supplemented by data from on-site reference wetlands. Wetland monitoring will entail analysis of two primary parameters: vegetation and hydrology. Monitoring of restoration and enhancement efforts will be performed until success criteria are fulfilled.

6.1 HYDROLOGY MONITORING

After hydrological modifications are performed, continuous monitored, surficial monitoring wells will be designed and placed in accordance with specifications in U.S. Corps of Engineers', <u>Installing Monitoring Wells/Piezometers in Wetlands</u> (WRP Technical Note HY-IA-3.1, August 1993). Monitoring wells will be set to a depth of approximately 16 inches below the soil surface. The 16-inch well depth will provide a more accurate depiction of perching across low permeability, subsurface soil layers (B horizon surface).

Ten monitoring wells will be installed to provide representative coverage within each of the wetland physiographic landscape areas (Figure 6.1). Five monitoring wells will also be placed within the reference wetland site in similar landscape positions. Hydrological sampling will be performed on-site and within reference on a daily basis throughout the year.

6.2 HYDROLOGY SUCCESS CRITERIA

Target hydrological characteristics include a minimum regulatory wetland hydrology criteria based upon reference groundwater modeling. Evaluation of success criteria will also be supplemented by sampling and data comparison between restoration areas and the reference wetland site.

The reference groundwater model forecasts that the wetland hydroperiod in restoration areas will average 8% of the growing season in early successional phases (Section 4.1 and Table 4.1). Average wetland hydroperiods encompassing 8% of the growing season are predicted as occurring in 55% of the years modeled (21 out of 38 years).

The average wetland hydroperiod is forecast to exhibit a gradual increase from 8% of the growing season immediately after farm land is abandoned and drainage structures are removed to as much as 20% under steady state forest conditions. A gradual increase in hydroperiods may suggest that water storage capacity (rooting functions, organic materials/debris accumulation, microtopography, etc.) exhibits a significant effect on maintenance of wetland hydrology in precipitation driven wetlands. In old field stages of succession, accelerated runoff may occur within the former plow layer, relict field crowns, and any relict linear depressions or conduits associated with backfilled ditches. For purposes of this model, runoff is assumed to occur at accelerated rates which reduces the influence of evapotranspiration on wetland hydrodynamics. Consequently, accelerated drainage would be expected to decrease, and wetland hydroperiods increase, as successional vegetation colonizes the Site.

Based on the groundwater model, hydrology success criteria for the five-year monitoring period will include a minimum regulatory criterion, comprising saturation (free water) within one foot of the soil surface for 5% of the growing season. Based on the model, this success criteria should be achieved in 82% of the monitoring years.

Reference Wetland Sites

Five monitoring wells will be placed in the reference wetland located in the northwestern periphery of the Site. Wetland hydroperiods within reference will be compared to the restoration area to further evaluate mitigation success and to verify model predictions. Based on the model, the restoration areas should maintain saturation within one foot of the soil surface for at least 40% of the hydroperiod exhibited by the reference wetland (8%/20%) in any given year.

6.3 VEGETATION

83

Restoration monitoring procedures for vegetation are designed in accordance with EPA guidelines presented in Mitigation Site Type (MiST) documentation (EPA 1990) and COE Compensatory Hardwood Mitigation Guidelines (DOA 1993). The following presents a general discussion of the monitoring program.

After planting has been completed in winter or early spring, an initial evaluation will be performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional site modifications will be implemented after the first year on a case by case basis based on success criteria consultation with USACE.

During the first year, vegetation will receive cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by weeds. Subsequently, quantitative sampling of vegetation will be performed between August 1 and October 31 after each growing season until the vegetation success criteria is achieved.

Permanent 0.04 ha (0.1 ac) plots will be established randomly in immediate proximity to monitoring wells (Figure 6.1). Fifteen (15) plots will be established throughout the Site and correlated with hydrological monitoring locations to provide point-related data on hydrological and vegetation parameters. The plot distribution will provide a 0.8% sample of the Site. Monitoring will determine survivorship of planted trees.

6.4 VEGETATION SUCCESS CRITERIA

Success criteria have been established to verify that the wetland vegetation component supports a species composition sufficient for a jurisdictional determination. Additional success criteria are dependent upon the density and growth of characteristic forest species. Specifically, a minimum mean density of 790 characteristic trees/ha (320 characteristic tree species/ac) must be surviving for 3 years after initial planting. Subsequently, 715 characteristic trees/ha (290 characteristic tree species/ac) must be surviving in year 4, and

640 characteristic trees/ha (260 characteristic tree species/ac) in year 5. Loblolly pine (softwood species) cannot comprise more than 10 percent of the 320 stem/acre requirement. In addition, at least five character tree species must be present, and no species can comprise more than 20 percent of the 320 stem/acre total. Supplemental plantings will be performed as needed to achieve the vegetation success criteria.

No quantitative sampling requirements are proposed for herb and shrub assemblages as part of the vegetation success criteria. Development of a swamp forest canopy over several decades and restoration of wetland hydrology will dictate the success in migration and establishment of desired wetland understory and groundcover populations.

6.5 REPORT SUBMITTAL

An "as built" plan drawing of the area, including initial species compositions by community type, and sample plot and well locations, will be provided after completion of planting. A discussion of the planting design, including what species were planted, the species densities and numbers planted will also be included. The report will be provided within 90 days of completion of all work.

Subsequently, reports will be submitted yearly to appropriate permitting agencies following each assessment. Reports will document the sample plot locations, along with photographs which illustrate site conditions.

Surficial well data will be presented. The duration of wetland hydrology during the growing season will also be calculated within each community restoration map unit.

The survival and density of planted tree stock and natural recruitment will be reported and evaluated relative to the success criteria.

6.6 CONTINGENCY

 $\tilde{f}(z)$

In the event that vegetation or hydrology success criteria are not fulfilled, a mechanism for contingency will be implemented. For vegetation contingency, replanting and extended monitoring periods will be implemented if community restoration does not fulfill minimum species density and distribution requirements.

Hydrological contingency will require consultation with hydrologists and regulatory agencies if wetland hydrology restoration is not achieved during the monitoring period. Recommendations for contingency to establish wetland hydrology will be implemented and monitored until the Hydrology Success Criteria are achieved.

7.0 DISPENSATION OF PROPERTY

NCDOT will maintain ownership of the property until all mitigation activities are completed and the site is determined to be successful. Although no plan for dispensation of the Site has been developed, NCDOT will deed the property to a resource agency (public or private) acceptable to the appropriate regulatory agencies. Covenants and/or restrictions on the deed will be included that will ensure adequate management and protection of the site in perpetuity.

8.0 MITIGATION CREDIT ASSESSMENT

Mitigation credit will be based on functions generated by restoration and comparison of restored functions to impacted resources. Although impacted wetland and stream resources are currently unknown, an evaluation of mitigation activities is provided to orient debiting procedures as impacts are quantified. This assessment subjectively evaluates mitigation wetland and stream functions under existing conditions and compares these functions to the post restoration conditions.

Wetland functional evaluations entail subjective assessments of hydrogeomorphic (HGM) wetland functions outlined in various research (Brinson 1994). This assessment categorizes functions into three primary areas: a) hydrodynamics; b) biogeochemical processes; and c) biotic resources.

Reference wetlands within the Site and in the region were utilized as an indicator of wetland functions and wetland functional capacity. Target functions have been identified based on the types of potential wetlands present, primarily nonriverine precipitation driven, mineral soil flats.

8.1 WETLAND AND STREAM FUNCTIONS UNDER EXISTING CONDITIONS

The 75-ha (187-ac) Site consists of approximately 37 ha (92 ac) of PC crop land on potentially restorable wetlands (Figure 8.1). An additional 7 ha (19 ac) comprises existing forested wetlands. The remainder of the Site (31 ha [76 ac]) is located in upland ecotones and buffers adjacent to wetland restoration areas. In addition, 1252 m (4107 ft) of dredged, third order stream channel that does not support riparian vegetation.

Under agricultural land uses, the entire area exhibits negligible wetland functions. Hydrodynamic functions have been effectively eliminated from the site due to construction of drainage networks, soil leveling/compaction, and removal of forest vegetation. Features which depict performance of hydrodynamic wetland functions, such as surface microtopography, ephemeral ponding, forest vegetation, and characteristic wetland soil properties have been eliminated by alternative land uses.

Reduction or elimination of wetland hydrology and removal of forest vegetation has also negated biogeochemical cycling and biological functions within the complex. PC crop lands typically do not support natural communities adapted to wetlands or the wetland dependent wildlife characteristic in the region.

The Acre Swamp stream channel has been entrenched and straightened into the valley floor by dredging. Throughout a majority of the Site, crop land extends to the bank of the channel with mowing activity utilized to remove all bank vegetation. The banks are actively collapsing into the stream, introducing heavy bed loads that are expected to significantly degrade water quality and in-stream aquatic habitat.

3.

8.2 PROJECTED WETLAND AND STREAM FUNCTIONS UNDER POST-RESTORATION CONDITION

The wetland restoration has been designed to restore wetland features and functions similar to those exhibited by the reference wetlands. After implementation, the Site is expected to support a minimum of 37 ha (92 ac) of restored nonriverine wet hardwood and swamp forest wetlands (Figure 8.1). Wetland enhancement will occur within an additional 7 ha (19 ac) in the existing forest area. Upland buffers / ecotones, riparian buffer establishment, and associated groundwater wetland recharge potential will also be restored within the remaining 31 ha (76 ac) of upland and stream-side management area.

Projected performance of wetland functions is inferred from conditions expected 20 + years after mitigation activities are completed. This assessment assumes that restoration plans are implemented and that the wetland and riparian areas are protected from man-induced disturbances in perpetuity. These assumptions are valid if the Site is deeded or donated to a conservation organization that will manage the Site after wetland restoration success is achieved.

Site alterations are expected to restore and enhance near-surface and above-surface hydrodynamics. Ephemeral pools, surface microtopography, and swamp forest depressions characteristic of reference wetlands are expected to re-establish. Moderation of groundwater flow and discharge towards downstream areas would be redirected towards historic wetland conditions. The transformation of crop land adjacent to Acre Swamp into forested wetlands will also maximize water quality benefits and biochemical functions such as retention of particulates, removal of elements and compounds, and nutrient cycling. Retention features in the restored wetlands result primarily from spatial elimination of agricultural land immediately adjacent to approximately 9000 m (30,000 ft) of unprotected ditches and 1252 m (4107 ft) of the Acre Swamp canal.

Upland/wetland ecotones will also be restored within the wetland complex. Integration of wetland and upland interfaces are an important part of this mitigation plan. Wetland buffers will be restored along groundwater slopes, offering an ecological gradient from uplands to wetlands and providing for ecotonal fringes. Without upland restoration/enhancement and wetland buffer establishment, intrinsic functions in adjacent, restored wetlands may be diminished or lost in the future. In addition, a number of biological and physical wetland parameters are also enhanced by the presence of wetland/upland ecotones on the mitigation site (Brinson *et al.* 1981).

Biotic functions potentially restored in the complex include maintenance of habitat for certain terrestrial and semi-aquatic wildlife guilds. Species populations promoted include those dependent upon interspersion and connectivity with bottomland areas along with the need for forest interior habitat. Habitat value and community maintenance functions will also be improved by creation and interconnection of six plant community types along the restored environmental gradient (Figure 5.6).

8.3 MITIGATION CREDIT

Approximately 75 ha (187 ac) of land are being offered by the Site for future transportation projects in the region. The acreage for various wetland restoration types are summarized in the following table. Based on Environmental Protection Agency (EPA) guidelines (Page and Wilcher 1990), approximately 25-ha (63-ac) wetland replacement credits may become available for compensatory mitigation use.

Mitigation Design Unit	Area (ha [ac])	EPA Potential Mitigation Ratio (Mitigation area:Impact Area) (Page and Wilcher 1990)	Potential Replacement Credit (ha [ac])	
Nonriverine Hardwood Forest Restoration	37 (92)	1.6	23 (58)	
Nonriverine Hardwood Forest Enhancement	7 (19)	4:1	2 (5)	
Upland Buffer / Ecotone Restoration	31 (76)	1	1	
TOTAL	75 (187)	2.97:1	25 (63)	
Stream Mitigation	1252 m (4107 ft)	2:1	626 m (2054 ft)	

Restoration of upland buffers and ecotones may generate reduced credit ratios for wetland restoration in the complex. Past applications of HGM indicate that uplands may provide as much as a 20% lift in adjacent wetland functions on a per acre basis (31 ha [76 ac]). Therefore, mitigation ratios in restored wetland areas may be reduced to 1.6:1 by employing a landscape ecosystem approach to restoration.

Riverine portions of the Site adjacent to the Acre Swamp canal are projected to lack wetland hydrology due to the depth and drainage characteristics of the canal. However, riparian forest buffers would be restored along an approximately 1252 m (4107 ft) of the stream as a result of mitigation activities (Figure 8.1). Therefore, stream mitigation credit is proposed at a 2:1 ratio, generating approximately 626 m (2054 ft) of stream replacement credit for compensatory mitigation use.

Actual mitigation credit generated by restoration activities should be determined based on the achievement of Success Criteria, completed provisions for site protection in perpetuity, and the type and condition of wetlands impacted by a particular project. Restoration and enhancement strategies are designed to create steady-state nonriverine hardwood forests which support an array of native plant and wildlife communities. Restored steady-state wetland ecosystems would be expected to generate higher mitigation credit when compared to the degraded condition of potentially impacted wetlands typical of the project region. Therefore, above-estimated credit for this mitigation plan should be considered a base-line for determining appropriate credit on a project-by-project basis.

9.0 **REFERENCES**

- Adamus P.R., L.T. Stockwell, E.J. Clairain Jr., M.E. Morrow, L.P. Rozas, R.D. Smith. 1991.
 Wetland Evaluation Technique (WET), Volume 1: Literature Review and Evaluation Rationale. Wetlands Research Program Technical Report WRP-DE-2. U.S. Army Corps of Engineers Waterways Experiment Station. Vicksburg, MS.
- Adamus P.R., L.T. Stockwell. 1983. A Method for Wetland Functional Assessment, Volume
 I. Critical Review and Evaluation Concepts. Federal Highway Administration Report
 no. FHWA-IP-82-23. U.S. Department of Transportation, Washington, D.C.
- Baumer, O. and J. Rice. 1988. Methods to predict soil input data for DRAINMOD ASAE Paper No. 88-2564. ASAE, St. Joseph, MI 49085.
- Beets, C.P. 1992. The relation between the area of open water in bog remnants and storage capacity with resulting guidelines for bog restoration. (in) Peatland Ecosystems and Man: An Impact Assessment. (ed.) O. M. Bragg, P. D. Hulme, H. A. P. Ingram, and R.A. Robertson. International Peat Society. University of Dundee, Dundee, Scotland.
- Belcher, H.W. and G.E. Merva. 1987. Results of DRAINMOD verification study for Zeigenfuss soil and Michigan climate. ASAE Paper No. 87-2554. ASAE, St. Joseph, MI 49085.
- Bouwer, H. and R.C. Rice. 1985. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 3, pp 423-428.

Bouwer, H. 1989. The Bouwer and Rice slug test-an update. Ground Water 27 (3) 304-309

- Brinson M.M., F.R. Hauer, L.C. Lee, W.L. Nutter, R.D. Smith, D. Whigham. 1995. Guidebook for Application of Hydrogeomorphic Assessments to Riverine Wetlands. U.S. Army Corps of Engineers Waterways Experiment Station. Vicksburg, MS.
- Brinson, M.M. 1993a. Changes in the functioning of wetlands along environmental gradients. Wetlands 13(2): 65-74, Special Issue, June 1993. The Society of Wetland Scientists.
- Brinson M.M. 1993b. A Hydrogeomorphic Classification for Wetlands. Wetlands Research Program Technical Report WRP-DE-4. U.S. Army Corps of Engineers Waterways Experiment Station. Vicksburg, MS.
- Brinson M., B. Swift, R. Plantico, J. Barclay. 1981. Riparian Ecosystems: Their ecology and status. U.S. Fish and Wildlife Service FWS/OBS 81/17
- Brower, J.E., J.H. Zar, C.N. von Ende. 1990. Field and Laboratory Methods for General Ecology. William C. Brown Publishers, Debuque, IA.

- Brown, Philip M., et al. 1985. Geologic Map of North Carolina, North Carolina Department of Natural Resources and Community Development, 1-.500,000 scale.
- Cowardin, L.M., V. Carter, F. C. Golet, and Edward T. Laroe. 1979. Classification of Wetland and Deepwater Habitats of the United States. Fish and Wildlife Service, U.S. Department of Interior.
- Department of the Army (DOA). 1993 (unpublished). Corps of Engineers Wilmington District. Compensatory Hardwood Mitigation Guidelines (12/8/93).
- Department of the Army (DOA). 1987. Corps of Engineers Wetland Delineation Manual. Tech. Rpt. Y-87-1, Waterways Experiment Station, COE, Vicksburg, Mississippi.
- Division of Environmental Management (DEM). 1994. Tar-Pamlico River Basinwide Water Quality Management Plan. N.C. Department of Environment, Health, and Natural Resources, Water Quality Section, Raleigh, NC.
- Division of Water Quality (DWQ). 1998. Classifications and Water Quality Standards Assigned to the Waters of the Cape Fear River Basin, N.C. Department of Environment, Health, and Natural Resources, Raleigh, N.C.
- Division of Water Quality (DWQ). 1996. Water Quality Certification Administrative Code Section: 15A NCAC 2H.0500 as amended October 1, 1996. State of North Carolina Department of Environment, Health, and Natural Resources.
- Environmental Protection Agency (EPA). 1992. Mitigation Banking Guidance. EPA Region IV, Atlanta, GA.
- Environmental Protection Agency (EPA). 1990. Mitigation Site Classification (MiST) A Methodology to Classify Pre-Project Mitigation Sites and Develop Performance Standards for Construction and Restoration of Forested Wetlands. USEPA Workshop, August 13-15, 1989. USEPA Region IV and Hardwood Research Cooperative, North Carolina State University, Raleigh, NC.
- Fouss, J.L., R.L. Bengtson and C.E. Carter. 1987. Simulating subsurface drainage in the lower Mississippi Valley with DRAINMOD. Transactions of the ASAE 30 (6).(1679 1688).
- Gayle, G., R.W. Skaggs and C.E. Carter. 1985. Evaluation of a water management model for a Louisiana sugar cane field. J. of Am. Soc. of Sugar Cane Technologists, 4: 18 28. Graham County Historical Society, 1992. <u>Graham County Heritage</u>. Robbinsville, NC.

- Hamel, P.B. 1992. The Land Manager's Guide to the Birds of the South. The Nature Conservancy, Southeastern Region, Chapel Hill, NC. 437 pp.
- Hvorslev, M.J. 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps of Engineers Waterways Experimental Station Bulletin 36, Vicksburg, MS.
- Keller, M.E., C.S. Chandler, J.S. Hatfield. 1993. Avian Communities in Riparian Forests of Different Widths in Maryland and Delaware. Wetlands 13(2):137-144, Special Issue, June 1993. The Society of Wetland Scientists.
- Martof, B.S., W.M. Palmer, J.R. Bailey, and J.R. Harrison III. 1980. Amphibians and Reptiles of the Carolinas and Virginia. University of North Carolina Press, Chapel Hill, NC. 264 pp.
- Menhinick, E.F. 1991. The Freshwater Fishes of North Carolina. The Delmar Company, Charlotte, NC for North Carolina Wildlife Resources Commission, Raleigh, NC. 227 pp.
- Page, R.W. and L.S. Wilcher. 1990. Memorandum of Agreement Between the EPA and the DOE Concerning the Determination of Mitigation Under the Clean Water Act, Section 404(b)(1) Guidelines. Washington, DC.
- Palmer, W.M. and A.L. Braswell. 1995. Reptiles of North Carolina. The University of North Carolina Press, Chapel Hill, NC for the N.C. State Museum of Natural Sciences. 412 pp.
- Potter, E.F., J.F. Parnell, and R.P. Teulings. 1980. Birds of the Carolinas. The University of North Carolina Press, Chapel Hill, NC. 408 pp.
- Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. University of North Carolina Press, Chapel Hill, NC. 1183 pp.
- Rogers, J.S. 1985. Water management model evaluation for shallow sandy soils. Transactions of the ASAE 28 (3): 785-790.
- Schafale, M. P., A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation, NC Natural Heritage Program, Division of Parks and Recreation, NC DEM, Raleigh NC.
- Schouwenaars, J.M. 1995. The selection of internal and external water management options for bog restoration. (in) Restoration of Temperate Wetlands. (ed.) B. D. Wheeler, S. C. Shaw, W. J. Fojt, and R. A. Robertson. John Wiley & Sons, Ltd. West Sussex, England.

- Sharitz, R.R. and J.W. Gibbons. 1982. The Ecology of Southeastern Shrub Bogs (Pocosins) and Carolina Bays: A Community Profile. U.S. Fish and Wildlife Service. FWS/OBS-82/04.
- Skaggs, R.W. 1982. Field Evaluation of a Water Management Simulation Model. Transactions of the ASAE 25 (3), pp 666-674.
- Skaggs, R.W., N.R. Fausey, B.H. Nolte. 1981. Water Management Evaluation for North Central Ohio. Transactions of the ASAE 24 (4), pp 922-928.
- Skaggs, R.W., J.W. Gilliam, R.O. Evans. 1991. A Computer Simulation Study of Pocosin Hydrology. Wetlands (11), pp 399-416.
- Skaggs, R.W., et al. 1993. Methods for Evaluating Wetland Hydrology. ASAE Meeting Presentation Paper No. 921590. 21 p.
- Smith, R.D., A. Ammann, C. Bartoldus, M.M. Brinson. 1995 (unpublished). An Approach for Assessing Wetland Functions Using Hydrogeomorphic Classification, Reference Wetlands, and Functional Indices. Wetlands Research Program Technical Report WRP DE-___. US Army Engineer Waterways Experiment Station, Vicksburg, MS
- Strahler, A.N. 1964. Geology. Part II. Quantitative geomorphology of drainage basins and channel networks. (in) Handbook of Applied Hydrology. (ed. V.T. Chow), pp. 4-39 to 4-76, McGraw Hill, New York.
- Susanto, R.H., J. Feyen, W. Dierickx, G. Wyseure. 1987. The Use of Simulation Models to Evaluate the Performance of Subsurface Drainage Systems. Proc. of the Third International Drainage Workshop, Ohio State University, OH. pp. A67 - A76.
- U.S. Department of Agriculture (USDA). 1987. Hydric Soils of the United States. In cooperation with the National Technical Committee for Hydric Soils, USDA Natural Resource Conservation Service.
- U.S. Department of Agriculture (USDA). 1995. Soil Survey of Beaufort County, North Carolina. Natural Resource Conservation Service.
- U.S. Geological Survey. 1974. Hydrologic Cataloging Unit Map for the State of North Carolina.
- Webster, W.D., J.F. Parnell, and W.C. Biggs, Jr. 1985. Mammals of the Carolinas, Virginia, and Maryland. The University of North Carolina Press, Chapel Hill, NC. 255 pp.

Yoakum, J., W.P. Dasmann, H.R. Sanderson, C.M. Nixon, and H.S. Crawford. 1980. Habitat Improvement Techniques. Pp 329-403 in S.D. Schemnitz (Editor). Wildlife Management Techniques Manual, 4th ed., rev. The Wildlife Society, Washington, DC 686 pp.

ميدم. المراجع درموم درمايع

10.0 APPENDICES

New York

indexes in the

the strength strength of the

كتابينية بناخ

Appendix A: Well Data

Appendix B: Flood Frequency Analyses

<u>Appendix A</u>

Contraction of the second

and the second second

Well Data

Continous Monitoring Well Data Available Upon Request

Same and

Appendix B

and the second sec

- Contraction -

and a second second

Flood Frequency Analyses

HYDRAULIC ANALYSIS OF ACRE SWAMP FOR THE ABC WETLAND MITIGATION SITE

Sector Sector

and the second second

BEAUFORT COUNTY, NC

ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC MITIGATION SITE WATER SURFACE ELEVATIONS FOR DIFFERENT FLOOD FREQUENCIES

The following describes the assumptions and methodology used in estimating the water surface elevations for Acre Swamp which is on the eastern side of ABC mitigation site. ABC Mitigation site is north east of Pinetown in Beaufort County. ABC Mitigation Site has SR 1532 to the south and SR 1508 to the west.

Acre Swamp north of SR 1532 in Beaufort County is the study area for the Water Surface Profile Computational model (WSPRO). Acre Swamp north of SR 1532 is not in a FEMA detailed study area completed for Beaufort County. Since the study area is not a detailed study area, a WSPRO model was used instead of HEC-2 to estimate water surface elevations for different flood frequencies.

Other Studies in the Area: Bridge survey report for Bridge No. 157 (which is on SR 1532 over Acre Swamp) and FEMA study for Acre Swamp south of SR 1532 were the two sources of information for the study area. The study area is not a detailed FEMA study area. However, FEMA elevations south of SR 1532 can be used to verify reasonable accuracy of WSPRO model. Bridge report for Bridge No. 157 completed in March 1956 was used to get information about the bridge..

<u>Controlling Factors</u>: Acre Swamp both north and south of SR 1532 has wide flood plain (more than 500 feet). Bridge No. 157 crosses over Acre Swamp on SR 1532. Bridge No. 157 is a 51 feet long bridge with three 17 feet long spans. Acre Swamp severely constricts the stream near the bridge. Because of this severe constriction through the bridge, bridge hydraulics will be the controlling factor for estimating water surface elevations upstream of the bridge. WSPRO modeling of Acre Swamp started near the bridge and extended 5,150 feet upstream to the end of ABC Mitigation Site.

Drainage Area: United States Geological Survey (USGS) topographic maps were used to estimate the drainage area of Acre Swamp near the Bridge No. 157. Estimated drainage area of Acre Swamp near the bridge is 26.6 square miles and was confirmed by the 1956 Bridge Report.

<u>Flood Discharges</u>: Flood discharges for different flood frequencies were estimated using regression equations for Coastal Plains published in U.S. Geological Survey Water-Resources Investigations Report 87-4096. However, there were no regression equations to estimate 1-year flood. Log-log graph was used to estimate 1-year flood discharge. Flood discharges for different flood frequencies and Log-log graph can be seen in Appendix A.

<u>Cross-Sections Along Acre Swamp</u>: Two stream cross sections of the Acre Swamp near ABC Mitigation Site were provided by Eco-Science. These cross sections were supplemented by the cross sections stripped from the topographic maps of the area.

WSPRO Model: As mentioned before, WSPRO model started near the bridge on SR 1532 over Acre Swamp and extended five thousand one hundred fifty feet upstream to the limits of ABC Mitigation Site. Water surface elevations for different flood frequencies were found at eleven sections along Acre Swamp. Description and summary of water surface elevations at these eleven sections can be found in Appendix B. Complete WSPRO input and output can be found in Appendix C. 100 year flood elevation for Acre Swamp just after merging with Fork Swamp, as published by FEMA was 28.8 feet above Mean Sea Level. The 100 year flood elevations upstream should be either equal or more than this elevation. As shown in the summary, the 100 year flood elevation near the bridge was 29.125 feet. This verifies the reasonable accuracy of this WSPRO model. Flood boundaries for different flood frequencies can be found on the topographic maps included in Appendix D.

G:\prjects\ecoscience\beaufort\summary.doc

APPENDIX A

Section 20

ACRE SWAMP, BEAUFORT COUNTY, NC DISCHARGES FOR DIFFERENT FLOOD FREQUENCIES AT BRIDGE NO. 157 ON SR 1532 OVER ACRE SWAMP

Drainage Area(A) = 26.6 square miles

Use USGS Regression Equations for Coastal Plain areas

 $\begin{array}{l} Q_2 = 69.4 \ A^{0.632} = 551.93, \ say \ 550.00 \ cfs \ (cubic \ feet \ per \ second) \\ Q_5 = 149 \ A^{0.582} = 1005.69, \ say \ 1000.00 \ cfs \\ Q_{10} = \ 225 \ A^{0.559} = 1408.29, \ say \ 1400.00 \ cfs \\ Q_{25} = \ 362 \ A^{0.532} = \ 2073.70, \ say \ 2100.00 \ cfs \\ Q_{50} = \ 490 \ A^{0.514} = \ 2645.97, \ say \ 2600.00 \ cfs \\ Q_{100} = \ 653 \ A^{0.497} = \ 3334.87, \ say \ 3300.00 \ cfs \end{array}$

APPENDIX B

.

ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE WATER SURFACE ELEVATIONS FOR DIFFERENT FLOOD FREQUENCIES

Constant Con

States States

a state of the second sec

W.W.

Ĵ

SECTION	DESCRIPTION	1 YR Q	2 YR Q	5 YR Q	10 YR Q	25 YR Q	10 YR Q 25 YR Q 50 YR Q 100 YR Q	100 YR Q
APPR	50' upstram of bridge on SR 1532	17.783	18.796	20,801	21 969	23 421	26 062	20 17 5
SEC1	450' upstream of bridge on SR 1532	19.046	20.179	22.095	23 325	25 205	20.002	20.202
SECA	950' upstream of bridge on SR 1532	20.262	21.470	23.430	24.800	26.387	27.230	29.389
SEC3	1450' upstream of bridge on SR 1532	21.405	22.726	24.921	26.326	27.953	28.391	29,699
SEC4	1950' upstream of bridge on SR 1532	22.459	23.841	26.145	27.630	28.919	29.386	30.236
SEC5	2450' upstream of bridge on SR 1532	23.481	24.901	27.255	28.762	29.909	30.386	31,005
SECB	3150' upstream of bridge on SR 1532	24.709	26.126	28.343	29.800	30.830	31.278	31,808
SEC6	3650' upstream of bridge on SR 1532	25.449	26.779	28.555	29.916	30.929	31.380	31.916
SEC7	4150' upstream of bridge on SR 1532	26.305	27.584	28.997	30.156	31.152	31.605	32.136
SEC8	4650' upstream of bridge on SR 1532	27.229	28.470	29.766	30.617	31.585	32.045	32.564
SEC9	5150' upstream of bridge on SR 1532	28.196	29.426	30.694	31.355	32.230	32.715	33.252

.

e el True el Color

```
1 0
   T1 ACRE SWAMP, BEAUFORT COUNTY, NC
    T2 WETLAND RESTORATION, ABC SITE
    T3 EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE
       10
            2Q 5Q
                     10Q 25Q 50Q
                                    1000
       350 550 1000 1400 2100 2600 3300
    0
    SK .002 .002 .002 .002 .002
                                    .002
                                          .002
    4
   XS EXIT 1000 * * *
   GR -500 30 -30 25 -27 24 -25 23 -23 22 -21 21 -19 20 -17 19
   GR -15 18 -13 17 -11 16 -9 15 -6 13.711 -4 12.01 -2 12.271
   GR 0 12.311 2 12.411 4 12.811 6 14.511 13 15 34 16 57 17
   GR 77 18 95 19 110 20 1000 30
   N 0.05 0.04 0.05
   SA -9 13
   XS FULV 1050 * * *
   GT +0.1
BR BRDG 1050 27.25 0 * * *
   GR -25 27.25 -22 26 -20 25 -13 20 -8 16 -6 13.811 -4 12.11
   GR -2 12.371 0 12.411 2 12.511 4 12.911 6 14.611 10 16
   GR 15.5 20 22 25 24 26 25 27.25 -25 27.25
   CD 2 25 2 28.5
   PD 0 15 1.5 1 17 3.0 2
   N. 0.05 0.04 0.05
    1 -8 10
   XR ROAD 1062 25 1
   GR -520 31 -25 29.4 0 29 25 29 500 31
   XS APPR 1120 * * *
   GR -460 31 -400 29 -260 28 -110 27 -78 26 -54 25 -42 24 -30 23
   GR -19 22 -17 21 -15 20 -14 19 -12 18 -10 17 -8 16 -6 13.911
   GR -4 12.21 -2 12.471 0 12.511 2 12.611 4 13.011 6 16 10 17 13 18
   GR 17 19 20 20 23 21 26 22 65 23 800 31
   N 0.05 0.04 0.05
   SA -8 10
  XS SEC1 1500 0.0 * * 0.002
   XS SECA 2000 0.0 * *
  GR -500 31 -440 30 -18 25 -16 24.231 -14 23.041 -12 22.131 -10 21.131
  GR -8 19.201 -7.4 18.131 -6 15.731 -4 14.031 -2 14.291 0 14.331
  GR 2 14.431 4 14.831 6 16.531 8 17.931 10 19.671 12 22.171 14 23.361
  GR 16 23.431 18 23.521 20 23.531 22 23.681 24 23.791 26 23.881
  GR 28 23.991 30 24.101 32 24.101 34 24.081 36 24.141 36.5 24.231 38 25
  GR 440 30 500 31
  XS SEC3 2500 0.0 * * 0.002
  XS SEC4 3000 0.0 * * 0.002
  XS SEC5 3500 0.0 * * 0.002
   3 SECB 4200 0.0 * *
  GR −400 32 −360 30 −240 29 −130 29.5 −28 29 −18 25.761 −16 25.361
  GR -14 25.011 -12 24.761 -10 24.211 -8 23.511 -6 22.361 -4 21.161
```

No.

-3 20.111 -2 18.811 -1 18.711 0 18.661 2 18.511 4 18.461 6 17.611 8 17.961 9 19.511 10 21.111 12 22.761 14 23.461 16 23.761 18 24.061 GR 20 24.361 22 24.511 24 24.611 26 24.611 28 24.761 32 24.861 GR 36 24.961 40 25.161 44 25.261 48 25.461 52 25.561 57.8 25.761 GR 180 26 440 30 500 32 XS SEC6 4700 0.0 * * 0.002 * XS SEC7 5200 0.0 * * 0.002 * XS SEC8 5700 0.0 * * 0.002 * XS SEC9 6200 0.0 * * 0.002 * EX 0 0 0 0 0 0 0

ER

Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Run Date & Time: 4/23/99 8:53 am Version V050196 Input File: BEAUBR.WSP Output File: BEAUBR.LST *F *** Input Data In Free Format SI Τ1 ACRE SWAMP, BEAUFORT COUNTY, NC Т2 WETLAND RESTORATION, ABC SITE T3 EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE 350 550 1000 1400 2100 2600 3300 0 *** Processing Flow Data; Placing Information into Sequence 1 *** .002 .002 .002 .002 .002 .002 .002 SK \square Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English -----* ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE Starting To Process Header Record EXIT XS EXIT 1000 * * * GR -500 30 -30 25 -27 24 -25 23 -23 22 -21 21 -19 20 -17 19 -15 18 -13 17 -11 16 -9 15 -6 13.711 -4 12.01 -2 12.271 GR GR 0 12.311 2 12.411 4 12.811 6 14.511 13 15 34 16 57 17 GR 77 18 95 19 110 20 1000 30 N 0.05 0.04 0.05 SA -9 13 *** Completed Reading Data Associated With Header Record EXIT *** *** Storing X-Section Data In Temporary File As Record Number 1 *** *** Data Summary For Header Record EXIT *** SRD Location: 1000. Cross-Section Skew: .0 Error Code 0 Valley Slope: .00000 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00 X,Y-coordinates (26 pairs) Х Y Х Ү Х Υ -------------500.000 30.000 -30.000 25.000 -27.000 24.000 -25.000 23.000 -23.000 22.000 -21.000 21.000 -19.000 20.000 -17.000 -15.000 19.000 18.000 17.000 13.711 12.311 -13.000-11.000 16.000 -9.000 15.000 -6.000 -4.000 -2.000 12.010 12.271 .000 2.000 14.511 17.000 20.000 12.411 4.000 12.811 6.000 13.000 15.000 34.000 16.000 77.000 1000.000 57.000 18.000 95.000 19.000 110.000 30.000 _____

Minimum and Maximum X, Y-coordinates Minimum X-Station: -500.000 (associated Y-Elevation: 30.000) Maximum X-Station: 1000.000 (associated Y-Elevation: 30.000) Minimum Y-Elevation: 12.010 (associated X-Station: -4.000) Maximum Y-Elevation: 30.000 (associated X-Station: -500.000) Roughness Data (3 SubAreas) Roughness Horizontal SubArea Coefficient Breakpoint _____ 1 .050 -9.000 2 .040 ----13.000 3 .050 _____ Finished Processing Header Record EXIT Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE Starting To Process Header Record FULV XS FULV 1050 * * * GT +0.1 Completed Reading Data Associated With Header Record FULV *** No Roughness Data Input, Propagating From Previous Section * * * Storing X-Section Data In Temporary File As Record Number 2 *** *** *** Data Summary For Header Record FULV *** SRD Location: 1050. Cross-Section Skew: .0 Error Code 0 Valley Slope: .00000 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00 X,Y-coordinates (26 pairs) Х Υ Х Ү Х Y _____ ____ ____ ______ -----500.000 30.000 -27.000 -21.000 24.000 23.000 -25.000 21.000 -19,000 20.000 -15.000 18.000 17.000 -13.000 -9.000 15.000 13.711-4.00012.01012.3112.00012.411 -6.000 -2.000 12.271 12.411 15.000 18.000 30.000 .000 4.000 12.811 13.000 6.000 14.511 34.000 16.000 57.000 17.000 77.000 95.000 19.000 20.000 110.000 1000.000 ______ _ __ __ __ __ __ __ Minimum and Maximum X,Y-coordinates Minimum X-Station: -500.000 (associated Y-Elevation: 30.000)

Π

Maximum X-Station: 1000.000 (associated Y-Elevation: 30.000) Minimum Y-Elevation: 12.010 (associated X-Station: -4.000) Minimum Y-Elevation: 12.010 (associated X-Station: Maximum Y-Elevation: 30.000 (associated X-Station: -500.000) Roughness Data (3 SubAreas) Roughness Horizontal SubArea Coefficient Breakpoint _____ .050 1 ------9.000 2 .040 _____ ------13.000 3 .050 ----- Finished Processing Header Record FULV *-----* Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE * Starting To Process Header Record BRDG -----BR BRDG 1050 27.25 0 * * * GR -25 27.25 -22 26 -20 25 -13 20 -8 16 -6 13.811 -4 12.11 GR -2 12.371 0 12.411 2 12.511 4 12.911 6 14.611 10 16 GR 15.5 20 22 25 24 26 25 27.25 -25 27.25 CD 2 25 2 28.5 PD 0 15 1.5 1 17 3.0 2 N 0.05 0.04 0.05 SA -8 10 *** Completed Reading Data Associated With Header Record BRDG *** *** Storing Bridge Data In Temporary File As Record Number 3 *** *** Data Summary For Bridge Record BRDG *** SRD Location: 1050. Cross-Section Skew: .0 Error Code 0 Valley Slope: ****** Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00 X, Y-coordinates (18 pairs) Х Y X Y Х Υ -----------25.000 27.250 -22.000 26.000 -20.000 25.000

 -13.000
 20.000
 -8.000
 16.000
 -6.000
 13.811

 -4.000
 12.110
 -2.000
 12.371
 .000
 12.411

 2.000
 12.511
 4.000
 12.911
 6.000
 14.611

 -4.00012.1102.00012.51110.00016.00024.00026.000 -2.00012.3714.00012.91115.50020.00025.00027.250 22.000 -25.000 25.000 27.250 _____ _ _ _ _ _ _ _ _ _ _ _ _ Minimum and Maximum X, Y-coordinates Minimum X-Station: -25.000 (associated Y-Elevation: 27.250)

Maximum X-Station: 25.000 (associated Y-Elevation: 27.250) Minimum Y-Elevation: 12.110 (associated X-Station: -4.000) Maximum Y-Elevation: 27.250 (associated X-Station: -25.000) Roughness Data (3 SubAreas) Roughness Horizontal SubArea Coefficient Breakpoint 1 .050 ------8.000 .040 2 --- --- ---------10.000 .050 3 ____ _____ Discharge coefficient parameters BRType BRWdth EMBElv UserCD EMBSS 2 25.000 2.00 28.500 ******** Pressure flow elevations AVBCEL PFElev ******* 27.250 Abutment Parameters ABSLPL ABSLPR XTOELT YTOELT XTOERT YTOERT Pier/Pile Data (2 Group(s)) Code Indicates Bridge Uses Piers Group Elevation Gross Width Number ----15.0001.50017.0003.000 1 2 2 _____ Finished Processing Header Record BRDG * Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE Starting To Process Header Record ROAD XR ROAD 1062 25 1 GR -520 31 -25 29.4 0 29 25 29 500 31 *** Completed Reading Data Associated With Header Record ROAD *** Storing Roadway Data In Temporary File As Record Number 4 *** *** Data Summary For Roadway Record ROAD *** SRD Location: 1062. Cross-Section Skew: .0 Error Code 0 Roadway Width: 25.000 User-Specified Weir Coefficient: *****

Π

Input Code Indicates Roadway Surface Consists of a Paved Material. X,Y-coordinates (5 pairs) Х Y Х Ү Х Y -----_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ______ _____ -520.00031.000-25.00029.40025.00029.000500.00031.000 .000 29.000 Minimum and Maximum X,Y-coordinates Minimum X-Station: -520.000 (associated Y-Elevation: 31.000) Maximum X-Station: 500.000 (associated Y-Elevation: 31.000) Minimum Y-Elevation: 29.000 (associated X-Station: 25.000) Maximum Y-Elevation: 31.000 (associated X-Station: -520.000) Bridge datum projection: XREFLT = ****** Finished Processing Header Record ROAD Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE Starting To Process Header Record APPR XS APPR 1120 * * * GR -460 31 -400 29 -260 28 -110 27 -78 26 -54 25 -42 24 -30 23 GR -19 22 -17 21 -15 20 -14 19 -12 18 -10 17 -8 16 -6 13.911 GR -4 12.21 -2 12.471 0 12.511 2 12.611 4 13.011 6 16 10 17 13 18 GR 17 19 20 20 23 21 26 22 65 23 800 31 0.05 0.04 0.05 Ν SA -8 10 *** Completed Reading Data Associated With Header Record APPR *** Storing X-Section Data In Temporary File As Record Number 5 *** *** Data Summary For Header Record APPR *** SRD Location: 1120. Cross-Section Skew: .0 Error Code 0 Valley Slope: .00000 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00 X,Y-coordinates (30 pairs) Х Y X ан са X — че се с Y -----_____ ------یے بیٹر سے شہر سے شد شہ 31.000 27.000 -460.000 -400.000 29.000 -260.000 28.000 -110.000 24.000 -42.000 -17.00021.000 -12.000 18.000 13.911 -6.000 12.511 16.000 19.000 .000 6.000 17.000

26.000	22.000	65.000	23.000	800.000	31.000

Minimum and Maximum X, Y-coordinates

Minimum X-Station:	-460.000	(associated Y	-Elevation:	31.000)
Maximum X-Station:	800.000	(associated Y	-Elevation:	31.000	ý
Minimum Y-Elevation:	12.210	(associated X	-Station:	-4.000	'
Maximum Y-Elevation:	31.000	(associated X	-Station:	-460.000	'

Roughn	ess Data (3	
	Roughness	Horizontal
SubArea	Coefficient	Breakpoint
1	.050	
		-8.000
2	.040	
		10.000
3	.050	

ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE

* Starting To Process Header Record SEC1 *

XS SEC1 1500 0.0 * * 0.002

*** Completed Reading Data Associated With Header Record SEC1 *** *** No Roughness Data Input, Propagating From Previous Section *** *** Storing X-Section Data In Temporary File As Record Number 6 ***

*** Data Summary For Header Record SEC1 *** SRD Location: 1500. Cross-Section Skew: .0 Error Code 0 Valley Slope: .00200 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00

		-coordinates (
•		X ********************************		X	Y .
-460.000	31.760	-400.000	29.760	-260.000	28.760
-110.000	27.760	-78.000	26.760	-54.000	25.760
-42.000	24.760	-30.000	23.760	-19.000	22.760
-17.000	21.760	-15.000	20.760	-14.000	19.760
-12.000	18.760	-10.000	17.760	-8.000	16.760
-6.000	14.671	-4.000	12.970	-2.000	13.231
.000	13.271	2.000	13.371	4.000	13.771
6.000	16.760	10.000	17.760	13.000	18.760

- And	17.000 26.000	19.760 22.760	20.000 65.000	20.760 23.760	23.000 800.000	21.760 31.760
	Minimum X- Maximum X- Minimum Y- Maximum Y-	Minimum Station: Station: Elevation: Elevation:	and Maximum 2 -460.000 (as 800.000 (as 12.970 (as 31.760 (as	K,Y-coordinat ssociated Y-E ssociated Y-E ssociated X-S ssociated X-S	es levation: (levation: (tation: -46	31.760) 31.760) -4.000) 50.000)
			nness Data (Roughness a Coefficient	Horizontal Breakpoint		
		1	.050			
		2 3	.040 .050	10.000		
	*					
	*	Finished	Processing He	ader Record S	SEC1 *	
)	******** Federal	**************************************	**** W S P R inistration ter-Surface P English / O	- U.S.Geol rofile Comput utput Units:	.ogical Surve	***** Y
Name of Street	EXISTING (ACRE WE CONDITIONS FF	SWAMP, BEAUF TLAND RESTORA OM BRIDGE ON	ORT COUNTY, N TION,ABC SITE SR 1532 TILL	; The end of a	BC SITE
	* * *	Starting	To Process He	ader Record S	ECA *	
	GR 2 14.431 GR 16 23.431	440 30 -18 2 -7.4 18.131 4 14.831 6 1 18 23.521 2 30 24.101 3	5 -16 24.231 -6 15.731 -4 6.531 8 17.93 0 23.531 22 2 2 24.101 34 2	14.031 -2 14 1 10 19.671 1 3.681 24 23 7	.291 0 14.33 2 22.171 14 : 91 26 23 881	1 23.361
	no Rou	gnness Data	Data Associato Input, Propaga ata In Tempora	ating From Pr	evious Sectio	~~ ***
	*** SRD Location Valley Slope Energy Loss	: 2000. : .00200	mmary For Head Cross-Sectio Averaging Co -> Expansio	on Skew:	0 Error Coo	α. Π
	X	Х, Y Y	coordinates (3 X	35 pairs) Y	х	Y
	-500.000 -16.000 -10.000 -6.000	31.000 24.231 21.131 15.731	-440.000 -14.000 -8.000 -4.000	30.000 23.041 19.201 14.031	-18.000 -12.000 -7.400 -2.000	25.000 22.131 18.131 14.291

Sector 1

A strategy and strategy

No. of the second s

000 24.991 000 25.081 000 26.000
n: 32.000)
n: 32.000) -4.000) -500.000)
* * ********** Survey *
OF ABC SITE
* * *
d SEC4 *** Section *** Imber 9 ***
*** or Code 0 .c Mean. .on: .00
Y
0 27.000 0 24.131 0 20.131

	.000 6.000 12.000 18.000	16.331 18.531 24.171 25.521	2.000 8.000 14.000 20.000	16.431 19.931 25.361	4.000 10.000 16.000	16.831 21.671 25.431	
- 	24.000 30.000 36.000	25.791 26.101 26.141 32.000	26.000	25.531 25.881 26.101 26.231 33.000	22.000 28.000 34.000 38.000	25.681 25.991 26.081 27.000	
	Maximum X-S	tation: - tation:	and Maximum X 500.000 (as 500.000 (as 16.031 (as 33.000 (as	sociated Y-E	levation: 3	3.000) 3.000) 4.000) 0.000)	
			ness Data (Roughness Coefficient	Horizontal			
		1 2	.050 .040	-8.000			
		3	.050	10.000			
	* * * *********	****	Processing Hea		*	****	
	P	lodel for Wat	nistration er-Surface Pi English / Ou	cofile Comput	logical Survey ations. English	7	
	EXISTING CC	WEI	SWAMP, BEAUFC LAND RESTORAT M BRIDGE ON S	ION, ABC STTE	IC C THE END OF AE	BC SITE	
	* *	Starting T	o Process Hea	ider Record S	SEC5 *		
×s	** No Roug	ed Reading D hness Data I	ata Associate nput, Propaga	ting From Pr	r Record SEC5 evious Sectio ecord Number	n ***	
s v	** RD Location: alley Slope: nergy Loss C	3500. .00200 oefficients	-> Expansio	n Skew: nveyance By n: .50 C	C5 O Error Cod Geometric Mea ontraction:	n an	
····	X	Х, Y-с Ү	oordinates (3 X	5 pairs) Y	Х	Y	
	-500.000 -16.000 -10.000 -6.000	34.000 27.231 24.131 18.731	-440.000 -14.000 -8.000 -4.000	33.000 26.041 22.201 17.031	-18.000 -12.000 -7.400 -2.000	28.000 25.131 21.131 17.291	

	.000	17.331	2.000	17.431	4.000	17.831
	6.000 12.000 18.000 24.000 30.000	19.531 25.171 26.521 26.791	8.000 14.000 20.000 26.000 32.000	20.931 26.361 26.531 26.881 27.101	10.000 16.000 22.000 28.000	22.671 26.431 26.681 26.991
	36.000 440.000	27.101 27.141 33.000	36.500 500.000	27.231 34.000	34.000 38.000	
	Maximum X-St Minimum Y-El	cation: - cation: levation:	500.000 (as 500.000 (as	,Y-coordinate sociated Y-El sociated Y-El sociated X-St sociated X-St	evation: 34 evation: 34	.000)
			ness Data (Roughness Coefficient	Horizontal Breakpoint		
		1 2	.050			
		3	.050	10.000		
	* * * *****	Finished 1		ader Record S	*	
	Federal M	Highway Adm: odel for Wat put Units: H	inistration ter-Surface P English / O	- U. S. Geolo rofile Computa utput Units: H	ogical Survey ations. English	* * * * *
A under state of the state of t	EXISTING CO	ACRE WED	SWAMP, BEAUF	DRT COUNTY, NO FION,ABC SITE SR 1532 TILL J	Ç	* C site
	* * *	Starting 1		ader Record SE		
X G G G G G G G G	GR -14 25.011 GR -3 20.111 GR 8 17.961 9 GR 20 24.361 2	60 30 -240 2 -12 24.761 -2 18.811 -1 19.511 10 2 22 24.511 24 40 25.161 44	-10 24.211 -8 18.711 0 18 1.111 12 22.7 24.611 26 24	-28 29 -18 25. 3 23.511 -6 22 661 2 18.511 61 14 23.461 611 28 24.76 6.461 52 25.56	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	51 .611 24.061
	*** Complete *** No Rough	ed Reading D nness Data I	nput, Propaga	d With Header ting From Pre ry File As Re	vious Section	***
	*** SRD Location: Valley Slope:			er Record SEC	В	***

	Х	Х, Y- Ү	-coordinates X	(42 pairs) Y	х	Y	
	-400.000	32.000	-360.000	30.000	-240.000	29.000	
	-130.000	29.500	-28.000	29.000	-18.000	25.761	
	-16.000	25.361	-14.000	25.011	-12.000	24.761	
	-10.000	24.211	-8.000	23.511	-6.000	22.361	
	-4.000	21.161	-3.000	20.111	-2.000	18.811	
	-1.000	18.711	.000	18.661	2.000	18.511	
	4.000 9.000	18.461 19.511	6.000	17.611	8.000	17.961	
	14.000	23.461	10.000 16.000	21.111 23.761	12.000	22.761	
	20.000	24.361	22.000	24.511	$18.000 \\ 24.000$	24.061 24.611	
	26.000	24.611	28.000	24.761	32.000	24.861	
	36.000	24.961	40.000	25.161	44.000	25.261	
	48.000	25.461	52.000	25.561	57.800	25.761	
_	180.000	26.000	440.000	30.000	500.000	32.000	
		-Station: -Elevation: -Elevation:	ness Data (Roughness	ssociated Y-E ssociated X-S ssociated X-S 3 SubAreas) Horizontal	levation: 3 tation: tation: -40	2.000) 2.000) 6.000) 0.000)	
		****		0 *******	* ******		
		l Highway Adm Model for Wat Input Units: 1	ter-Surface P English / O	rofile Compu	tations.	У +	
	EXISTING	ACRE WE' CONDITIONS FRO		TION, ABC SIT	E THE END OF AI	BC SITE	
	*	Starting 1	lo Process He	ader Record :	SEC6 *		
	*						
	S SEC6 4700	0.0 * * 0.002					
	*** Compl	eted Reading I	ata Associat	ed With Head	er Record SEC	5 ***	
	*** No Ro *** Storip	ughness Data 1	nput, Propag	ating From Pr	revious Sectio	on ***	
	Storin	g X-Section Da	ita in Tempor	ary File As I	Record Number	12 ***	
	* * *	Data Sum	mary For Hea	der Record C	206	* * *	
	SRD Locatio	n: 4700.	Cross-Section				
	Valley Slop				Geometric Mea	an.	

la de la companya de la comp

I		Х.У	-coordinates	(42 pairs)		
-	Х	Y	X	(42 paris) Y	Х	Y
	-400.000	33.000	-360.000	31.000	-240.000	30.000
	-130.000	30.500	-28.000	30.000	-18.000	26.76
	-16.000	26.361	-14.000	26.011	-12.000	25.761
	-10.000	25.211	-8.000	24.511	-6.000	23.36
	-4.000	22.161	-3.000	21.111	-2.000	19.81
	-1.000	19.711	.000	19.661	2.000	19.51
	4.000	19.461	6.000	18.611	8.000	18.96
	9.000	20.511	10.000	22.111	12.000	23.76
	$14.000 \\ 20.000$	24.461	16.000	24.761	18.000	25.061
	26.000	25.361	22.000	25.511	24.000	25.611
	36.000	25.611 25.961	28.000	25.761	32.000	25.861
	48.000	26.461	40.000	26.161	44.000	26.261
	180.000	27.000	52.000 440.000	26.561	57.800	26.761
		27.000	440.000	31.000	500.000	33.000
	Maximum Y-E *	Rough SubArea 1 2 3	nness Data (Roughness	Breakpoint	*).000)
	Federal	Highway Adm Model for Wa	inistration ter-Surface P:	- U.S.Geo rofile Compu	* ***************** logical Survęy tations.	* * * *
	۲۲ *	ACRE	SWAMP, BEAUFO	DRT COUNTY,	 NC	*
		NDITIONS FR		SR 1532 TILL	E THE END OF AB	
	*	Starting	To Process Hea	der Record	SEC7	
XS	S SEC7 5200 0					

and the second se

a a construction of the second se

Data Summary For Header Record SEC7

	SRD Locatio Valley Slop	pe: .00200	Cross-Secti Averaging C		.0 Error Co y Geometric Me				
1953년 1957 1957 1957	Energy Loss	s Coefficients	s -> Expansi		Contraction:	.00			
	Х	Х, Y- Ү	-coordinates (X	42 pairs) Y	Х	Y			
	-400.000 -130.000 -16.000 -10.000	34.000 31.500 27.361 26.211	-360.000 -28.000 -14.000 -8.000	32.000 31.000 27.011 25.511	-240.000 -18.000 -12.000	31.000 27.761 26.761			
	-4.000 -1.000 4.000 9.000	23.161 20.711 20.461 21.511	-3.000 .000 6.000 10.000	23.311 22.111 20.661 19.611 23.111	-6.000 -2.000 2.000 8.000 12.000	24.361 20.811 20.511 19.961			
	14.000 20.000 26.000 36.000	25.461 26.361 26.611 26.961	16.000 22.000 28.000 40.000	25.761 26.511 26.761 27.161	12.000 18.000 24.000 32.000 44.000	24.761 26.061 26.611 26.861 27.261			
-	48.000 180.000	27.461 28.000	52.000 440.000	27.561 32.000	57.800	27.761 34.000			
and the second of the second		-Station: -	500.000 (as: 19.611 (as:	,Y-coordinat sociated Y-E sociated Y-E sociated X-S sociated X-S	levation: 34 levation: 34 tation: 6	4.000) 4.000) 5.000) 0.000)			
		Rough SubArea	ness Data (3 Roughness	3 SubAreas) Horizontal Breakpoint		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
n in fan de f		1	.050						
		2 3	.040 .050	10.000					
	* * *	Finished	Processing Hea	der Record	* SEC7 *				
	************************** W S P R O *********************************								
		WE		ION, ABC SIT		C SITE			
		Starting 1	To Process Hea	der Record	SEC8 *				
X	*** Compl *** No Ro	ughness Data 1	Data Associate Input, Propaga	ting From Pr	er Record SEC8 revious Sectio Record Number	n ***			

88.23¥

87.77S

200

and the second se
*** Data Summary For Header Record SEC8 *** SRD Location: 5700. Cross-Section Skew: .0 Error Code Valley Slope: .00200 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00 X, Y-coordinates (42 pairs) Х Y Х ·Y Х Y -400.000 35.000 -130.000 32.500 -16.000 28.361 -10.000 27.211 -4.000 24.161 _____ 35.000-360.00033.00032.500-28.00032.000 -240.000 32.000 28.761 -18.00028.011 26.511 23.111 21.661 20.611 -14.000 -12.000 27.761 -8.000 -6.000 25.361 -3.000 -2.000 21.811 -1.00021.711 .000 6.000 2.000 21.511 6.00020.61110.00024.11116.00026.76122.00027.51128.00027.76140.00028.16152.00028.561 4.000 21.461 8.000 20.961 12.000 18.000 24.000 32.000 44.000 22.511 9.000 25.761 14.000 26.461 27.061 27.361 20.000 27.611 26.000 27.611 27.861 36.000 27.961 28.461 28.261 48.000 52.000 57.800 28.561 28.761 29.000 33.000 180.000 440.000 500.000 35.000 ____ ______ ______ Minimum and Maximum X, Y-coordinates Minimum X-Station: -400.000 (associated Y-Elevation: 35.000) Maximum X-Station:500.000(associated Y-Elevation:35.000Minimum Y-Elevation:20.611(associated X-Station:6.000Maximum Y-Elevation:35.000(associated X-Station:-400.000 Roughness Data (3 SubAreas) Roughness Horizontal SubArea Coefficient Breakpoint ____ 1 .050 -----8.000 2 .040 -----10.000 3 .050 Finished Processing Header Record SEC8 * \Box Federal Highway Administration - U. S. Geological Survey Model for Water-Surface Profile Computations. Input Units: English / Output Units: English ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION, ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE Starting To Process Header Record SEC9 XS SEC9 6200 0.0 * * 0.002 Completed Reading Data Associated With Header Record SEC9

*** No Roughness Data Input, Propagating From Previous Section *** *** Storing X-Section Data In Temporary File As Record Number 15 ***

*** Data Summary For Header Record SEC9 *** SRD Location: 6200. Cross-Section Skew: .0 Error Code 0 Valley Slope: .00200 Averaging Conveyance By Geometric Mean. Energy Loss Coefficients -> Expansion: .50 Contraction: .00

Х	Х, Ү Ү	-coordinates X	(42 pairs) Y	х	Y
				~~~~~~	1
-400.000	36.000	-360.000	34.000	-240,000	33.000
-130.000	33.500	-28.000	33.000	-18.000	29.761
-16.000	29.361	-14.000	29.011	-12.000	29.761
-10.000	28.211	-8.000	27.511	-6.000	26.361
-4.000	25.161	-3.000	24.111	-2.000	22.811
-1.000	22.711	.000	22.661	2.000	22.511
4.000	22.461	6.000	21.611	8.000	21.961
9.000	23.511	10.000	25.111	12.000	26.761
14.000	27.461	16.000	27.761	18.000	28.061
20.000	28.361	22.000	28.511	24.000	28.611
26.000	28.611	28.000	28.761	32.000	28.861
36.000	28.961	40.000	29.161	44.000	29.261
48.000	29.461	52.000	29.561	57.800	29.761
180.000	30.000	440.000	34.000	500.000	36.000

Minimum and Maximum X,Y-coordinates Minimum X-Station: -400.000 (associated Y-Elevation: 36.000) Maximum X-Station: 500.000 (associated Y-Elevation: 36.000) Minimum Y-Elevation: 21.611 (associated X-Station: 6.000) Maximum Y-Elevation: 36.000 (associated X-Station: -400.000)

Roughn SubArea	ess Data ( 3 Roughness Coefficient	Horizontal
Subriea	coerrictenc	Breakpoint
1	.050	
		-8.000
2	.040	
		10.000
3	.050	

ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION,ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE EX 0 0 0 0 0 0

Wilson.

15

	Rea # Disch		er Surface levation	Friction Slope	Fl	ow Regime	
	1 35	50.00 *	 ****	.0020	 Sul	 b-Critical	
	2 55		* * * * * * *	.0020		b-Critical	
		.00.00 *	******	.0020		b-Critical	
d.		0.00	******	.0020		o-Critical	
			******	.0020	Sul	o-Critical	
		0.00	* * * * * * *	.0020		o-Critical	
ng .	7 330		******	.0020	Sul	o-Critical	
	*					*	
	* *	Beginnir	ig 7 Prof.	ile Calculat	ion(s)	*	
	Federal	Model for Wa nput Units:	ninistratio ater-Surfac English	on - U.S. ce Profile C / Output Un	Geologic Computatic Lits: Engl	ons.	****
E	EXISTING C	WE	TLAND REST	EAUFORT COUN IORATION,ABC ON SR 1532	SITE	END OF ABC	SITE
		WSEL	VHD	Q	AREA	SRDL	LEW
		EGEL	HF	V	K	FLEN	REW
en e		CRWS	HO -	FR # 	SF	ALPHA	ERR
	on: EXIT	17.065		350.000	127.410	******	-13.131
	r Type: X		) *****	2.747	7821.57	*******	58.305
SRD:	1000.000	0 15.641	*****	.442	*****	1.485	*****
Secti	on: FULV	17.183	.155	350.000	135.956	50.000	12 200
	r Type: F			2.574	8425.94	50.000	-13.360
SRD:	1050.000			.410	.0019	1.499	.005
1	<<< The	Preceding D	ata Reflec	t The "Unco	nstricted	" Profile 2	>>>
	CONVEYANO KRATIO:	CE RATIO OUT .51	SIDE OF RE	COMMENDED L	IMITS AT	SECID "APPI	R ".
Secti Heade	on: APPR	17.217	.546	350.000	60.012	70.000	-10.434
Heade	r Type: AS	5 17.763		5.832	4287.59	70.000	10.434
SRD:	1120.000			.619	.0034	1.033	007
	<<< The	Preceding D	ata Reflec	t The "Uncor	nstricted	" Profile >	>>>
	<<< The	Following	Data Refle	ct The "Cons	stricted"	Profile >>	>>
	<<< E	seginning Br	1age/Culve	rt Hydraulic	c Computa	tions >>>	
and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-		a de parte de la company d					
	n a suis a fina stra anna an anna. Marta coma a suismenn suisteanna suiste Marta coma a suiste suiste anna anna anna a	WSEL	VHD	•Q	AREA	SRDL	LEW
n sa an		WSEL EGEL CRWS	VHD HF HO	V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
Secti	on: BRDG	EGEL CRWS	HF HO	V FR #	K SF	FLEN ALPHA	REW ERR
Heade	on: BRDG r Type: BR	EGEL CRWS 	HF HO .500	V FR # 350.000	K SF 63.761	FLEN ALPHA 50.000	REW ERR -9.282
		EGEL CRWS 17.026 17.526	HF HO .500 .174	V FR #	K SF	FLEN ALPHA	REW

R.	Bridg	e Type 2	Flow Type 1					
	Pier/	Pile Code	0	.9681	.071 27	.250 *****	** ******	* ******
		* *	** Roadway Se	ection L	ocated at S	RD 1062.00	0 ***	
			Section:	ROAD	Header s Not Overt	Tvpe: XR		
A frequency of the second s			WSEL EGEL CRWS	VHD HF HO	· 37	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
	Sectio Header SRD:	on: APPR Type: AS 1120.000	17.783 18.167 15.922	.385 .218 .421	350.000 4.812 .503	72.732 5658.66 .0034	45.000 45.000 1.069	-11.565 12.348 .013
		Ap	proach Secti G) M(K)	on APPR	Flow Conti	raction Info	rmation	
•			.000 .00	0 562	2.9 -10.22	23 10.420	17.608	
			<<< End of B	ridge Hy	draulics Co	omputations	>>>	
	Header	n: SEC1 Type: XS 1500.000	19.046 19.335 16.682	.289 1.167 .000	350.000 4.097 .425		380.000 380.000 1.108	-12.571 14.143 .001
	Sectio Header SRD:	Type: XS	20.262 20.546 17.706	.285 1.208 .000	350.000 4.249 .368	82.373 7193.47 .0024	500.000 500.000 1.013	-9.099 10.473 .003
	Header	n: SEC3 Type: XS 2500.000	21.672	.267 1.123 .000	350.000 4.108 .352	85.199 7580.68 .0022	500.000 500.000 1.017	-9.248 10.587 .003
	Section Header SRD:	n: SEC4 Type: XS 3000.000	22.459 22.720 19.706	.261 1.045 .000	350.000 4.057 .347	86.273 7728.94 .0021	500.000 500.000 1.018	-9.304 10.630 .002
		n: SEC5 Type: XS 3500.000	23.481 23.739 20.706	.258 1.017 .000	350.000 4.036 .345	86.714 7789.90 .0020	500.000 500.000 1.019	-9.327 10.648 .002
		n: SECB Type: XS 4200.000	24.709 24.902 21.449	.193 1.154 .000	350.000 3.188 .371	109.772 9540.40 .0016	700.000 700.000 1.221	-11.811 27.308 .009
	Header	n: SEC6 Type: XS 4700.000	25.449 25.667 22.449	.218 .738 .013	350.000 3.481 .373	100.554 8696.57 .0015	500.000 500.000 1.159	-10.864 21.167
	Sectior	n: SEC7 Type: XS 5200.000	26.305 26.539 23.449	.235 .855 .008	350.000 3.642 .382	96.111	500.000 500.000 1.137	.014 -10.341 19.624 .010
	Sectior Header SRD:	n: SEC8 Type: XS 5700.000	27.229 27.473 24.449	.244 .928 .005	350.000 3.728 .389	93.883	500.000 500.000 1.128	-10.067 19.122 .001

And the second of the second sec

		n: SEC9 Type: XS 6200.000	28.196 28.445 25.449	.248 .968 .002	350.000 3.766 .392	92.930 7903.76 .0019	500.000 500.000 1.125	-9.958 18.903 .001
	. *	*********** Fodoral Hi	********	**** W S	SPRO **	*****	*****	
	*	Mode	e⊥ for Wat	er-Surfa	ion - U. ace Profile / Output	Computatio	ns.	
	EXI	ISTING COND	WEI	LAND RES	BEAUFORT CONSTORATION, AND CONSTRAINED	BC STTE	END OF ABC	* SITE
		_	WSEL EGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
		n: EXIT Type: XS 1000.000	17.827 18.033 16.373		550.000 2.923 .439		********* ********* 1.552	-14.653 73.533 *****
	Header	: FULV Type: FV 1050.000	17.946 18.132 16.373	.185 .094 .000	550.000 2.765 .411	198.901 13119.98 .0019	50.000 50.000 1.557	-14.893 75.929 .005
$= \frac{2\pi 2\pi q}{2\pi q} + \frac{2\pi q}$		<<< The Pre						>>>
	===135 C K	CONVEYANCE F	ATIO OUTS 4	IDE OF R	ECOMMENDED	LIMITS AT S	SECID "APPI	R ".
	Header	: APPR Type: AS 1120.000	17.846 18.762 17.075	.916 .277 .365	550.000 7.407 .773	74.255 5824.56 .0040	70.000 70.000 1.073	-11.692 12.537 012
		<<< The Pre	ceding Da	ta Refle	ct The "Unc	constricted'	' Profile >	>>>
		<<< The Fo <<< Begi	llowing Da nning Brid	ata Refl dge/Culv	ect The "Co ert Hydraul	nstricted" ic Computat	Profile >> ions >>>	>>
		_	WSEL ÈGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
	Section Header SRD:	: BRDG Type: BR 1050.000	17.677 18.519 16.692	.842 .205 .282	550.000 7.071 .696	77.787 6565.04 *****	50.000 50.000 1.083	-10.096 12.305 .001
	Bridge '		ow Type 1	С	P/A PFEL		XLAB	XRAB
	Pier/Pi.	le Code 0		.9607	.084 27.	250 ******	* ******	****
				ction Loo	cated at SR	D 1062.000	* * *	а 1
an constant and the second				ROAD ment Is	Header Ty Not Overtop	ype: XR pped >>>		
			WSEL EGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR

650								
	· ····							
	Conting							
	Section: A Header Typ	APPK Det As	$18.796 \\ 19.340$			99.858		
a second		20.000	17.075	.265	5.508 .569	8642.73 .0040		16.185
							1.151	011
		Approa	ch Secti	on APPR	Flow Cont	raction Inf	ormation	
		M(G)	M(K)	KQ	XLKQ	XRKQ	OTEL	
		.046		5 863				
					1.4 -11.0	50 11.350	18.615	
22								
		<<<	End of B	ridge Hy	draulics C	omputations	>>>	
	Section: S							
	Header Typ		20.179	.395	550.000 4.607	119.378	380.000	-14.419
	SRD: 150	0.000	17.835	.000	.465	10868.14 .0032	380.000	18.256
					. 105	.0032	1.196	.010
	Section: S		21.470	.429	550.000	107.415	500.000	-10.678
	Header Typ SRD: 200	0.000	21.899		5.120	10741.21	500.000	11.439
4.17.173	510. 200	0.000	18.672	.017	.420	.0026	1.052	.012
6.032	Section: S		22.726	.390	550.000	113.179	500.000	11 101
	Header Typ		23.116	1.216	4.860	11580.73	500.000	-11.191 11.644
1113	SRD: 250	0.000	19.672	.000	.397	.0024	1.062	.002
· · ···	Section: S	FCA	22 011	274				
	Header Typ		23.841 24.215	.3/4	$550.000 \\ 4.749$	115.818	500.000	-11.420
3		0.000		.000	.387	11966.99 .0022	500.000	11.736
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	N					.0022	1.067	.008
	Section: S			.366	550.000	117.222	500.000	-11.541
	Header Type SRD: 350	e: XS 0.000		1.038	4.692	12172.95	500.000	11.784
	510. 550	0.000	21.672	.000	.382	.0021	1.070	.014
	Section: SI		26.126	.209	550.000	228.963	700.000	10 100
a contra cont	Header Type		26.335	1.086	2.402	16023.89	700.000	-19.128 188.212
	SRD: 4200	0.000	22.470	.000	.615	.0016	2.329	018
	Section: SI	306	26.779	.261	<b>FEO</b> 000	101 010		
	Header Type		27.039	.669	550.000 3.199	171.913 14107.99	500.000	-18.054
	SRD: 4700		23.470	.026	.507		500.000 1.637	66.762
24.25 19.45	Soction. Or	207					1:05/	.009
	Section: SH Header Type		27.584	.288	550.000	157.595	500.000	-17.113
i wis			27.872 24.470	.811 .014	3.490	13216.14	500.000	52.656
				• • • • • •	.505	.0016	1.521	.008
	Section: SE		28.470	.309	550.000	149.940	500.000	-16.546
I	Header Type		28.779	.903	3.668	12670.24	500.000	48.365
	SRD: 5700	.000	25.470	.010	.517	.0018	1.475	006
	Section: SE	C9	29.426	31.8	550.000	147 100	500 000	
3	Header Type	XS	29.743	958	3 730	147.100 12455.40	500.000	-16.324
	SRD: 6200	.000	26.470	.004	.524	.0019	1.460	47.297 .002
	Fede	ral Higher	******* 	** WSI	PRO ****	******	*********	***
	rede	Model	ay Aumin for Wate	r-Surface	1 - U.S.	. Geological Computations	Survey	
		Input U	nits: En	glish /	Output Ir	lomputations hits: Englis	5. 2h	
	*						· • • • • • • • • • • • • • • • • •	.*
			ACRE SU	WAMP, BEA	UFORT COUN	ITY, NC		
	EXISTIN	G CONDITI	WETLA DNS FROM	AND RESTO	RATION, ABC	C SITE TILL THE EN		
					N SK 1532	IILL THE EN	D OF ABC S	ITE

a second and a second sec	Ĵ.	WSEL EGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
die waarde daarden.	Section: EXIT Header Type: XS SRD: 1000.000		.254 ***** *****	1000.000 3.236 .430	308.997 22345.36 *****	********* ********* 1.557	-17.057 95.428 *****
	Section: FULV Header Type: FV SRD: 1050.000	19.151 19.382 17.385	.231 .095 .000	1000.000 3.097 .405	322.897 23610.43 .0019	50.000 50.000 1.552	-17.302 97.265 .005
	<<< The F	receding Da	ata Refl	ect The "Und	constricted	d" Profile	>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPR ": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS: .80 1.07 18.69 18.69

===110 WSEL NOT FOUND AT SECID "APPR ": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY: 18.69 31.00 .50

===115 WSEL NOT FOUND AT SECID "APPR ": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS: 18.69 31.00 18.69

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS AT SECID "APPR ". KRATIO: .35

Section	n: APPR	18.688	1.901	1000.000	96.664	70.000	-13.376
Header	Type: AS	20.589	.358	10.345	8288.09	70.000	15.751
SRD:	1120.000	18.688	.835	1.070	.0051	1.142	.014

<<< The Preceding Data Reflect The "Unconstricted" Profile >>>

<<< The Following Data Reflect The "Constricted" Profile >>> <<< Beginning Bridge/Culvert Hydraulic Computations >>>

	0	.9479	.093	27.250	******	*****	******
	Information Flow Type 1	С	P/A	PFELEV	BLEN	XLAB	XRAB
: BRDG Type: BR 1050.000	18.611 20.347 18.475	1.736 .263 .802		.015 9	99.852 385.45 *****	50.000 50.000 1.113	-11.263 13.590 .001
	WSEL EGEL CRWS	VHD HF HO	Q V FR #		К	SRDL FLEN ALPHA	LEW REW ERR

*** Roadway Section Located at SRD 1062.000 ***

	Section: <<< Emban	ROAD kment I	Header s Not Overt	Type: XR opped >>>		
- -	WSEL EGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
<pre>Section: APPR Header Type: AS</pre>	20.801 21.498	.697 .315	1000.000 5.929	168.673 16864.81	45.000 45.388	-16.601 22.402

	SRD:	1120.00	0	18.688	3.832	.568	.0051	1.276	012
	z)	Р М (	G)	ch Sect M(K	ion APPR ) KQ	Flow Con XLK	traction In Q XRKQ	formation OTEL	
			.098	.(	)32 163	74.4 -12.2		7 20.643	
			<<< ]	End of	Bridge H	ydraulics (	Computation	s >>>	
	Sectior Header SRD:	n: SEC1 Type: X 1500.00	S 0	22.095 22.654 19.448	1.149	1000.000 5.257 .495		380.000	-17.669 24.004 .007
	Header	n: SECA Type: X 2000.00	S 0	23.430 24.158 20.335	1.417	1000.000 6.368 .533			-14.654 15.973 .003
	Header	n: SEC3 Type: X 2500.00	S	24.921 25.543 21.335	1.376	1000.000 5.710 .547	175.136 20185.79 .0028		-15.478 26.719 .009
		: SEC4 Type: X 3000.00		26.145 26.724 22.335	1.166	1000.000 5.395 .569	185.359 21252.06 .0023	500.000 500.000 1.278	-15.856 36.023 .015
	Header	: SEC5 Type: X 3500.00	S	27.255 27.809 23.335	1.077	1000.000 5.233 .552	191.093 21845.59 .0022		-16.062 36.546 .008
	_===135 С К	ONVEYAN RATIO:	CE RAT 2.54	'IO OUT	SIDE OF H	RECOMMENDED	LIMITS AT	SECID "SECE	· ".
general and and a second		: SECB Type: X: 4200.000	3	28.343 28.389 24.286	.577	1000.000 1.169 .197	855.795 55546.13 .0008	700.000 700.000 2.181	-25.971 332.286 .003
	===135 C K	ONVEYANO RATIO:	CE RAT .67	IO OUT	SIDE OF F	RECOMMENDED	LIMITS AT	SECID "SEC6	".
	Section Header SRD:		5	28.555 28.664 25.286	.109 .243 .031	1000.000 1.681 .334	594.771 37046.97 .0005	500.000 500.000 2.482	-23.540 281.097 .001
	Section Header SRD:		5	28.997 29.215 26.286	.218 .500 .054	1000.000 2.297 .516	435.394 26999.70 .0010	500.000 500.000 2.653	-21.817 244.829 004
	Section Header ' SRD:	Type: XS	;	29.766 30.061 27.286	.295 .787 .039	1000.000 2.664 .628	375.406 23529.54 .0016	500.000 500.000 2.674	-21.101 229.760 .020
		Type: XS 6200.000		31.019 28.286	.943 .015	1000.000 2.797 .668	357.583 22537.16 .0019	500.000 500.000 2.670	-20.880 225.097 .000
		M	Highwa lodel :	ay Admi for Wat	lnistrati er-Surfa	on - U.S ce Profile	S. Geologic Computatio Jnits: Engl	ns.	-*

ACRE SWAMP, BEAUFORT COUNTY, NC WETLAND RESTORATION,ABC SITE EXISTING CONDITIONS FROM BRIDGE ON SR 1532 TILL THE END OF ABC SITE

		WSEL EGEL CRWS	VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
Automatica Automatica Automatica	Section: EXIT	19.824	.285	1400.000	403.818	********	-18.647
	Header Type: XS	20.108	*****	3.467	31304.33	*********	107.356
	SRD: 1000.000	18.009	*****	.421	*****	1.523	*****
	Section: FULV	19.942	.264	1400.000	418.781	50.000	-18.883
	Header Type: FV	20.205	.095	3.343	32783.96	50.000	109.123
	SRD: 1050.000	18.009	.000	.402	.0019	1.518	.002

<<< The Preceding Data Reflect The "Unconstricted" Profile >>>

===110 WSEL NOT FOUND AT SECID "APPR ": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY: 19.80 31.00 .50

瀫

===115 WSEL NOT FOUND AT SECID "APPR ": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS: 19.80 31.00 19.80

===130 CRITICAL WATER-SURFACE ELEVATION A S S U M E D !!!!! ENERGY EQUATION N O T B A L A N C E D AT SECID "APPR ". WSBEG, WSEND, CRWS: 19.80 31.00 19.80

Section: APPR	19.803 2.124	1400.000	132.239	70.000	-14.803
Header Type: AS	21.928 *****	10.587	12394.68	70.000	19,410
SRD: 1120.000	19.803 *****	1.048	.0001	1.219	*****

<<< The Preceding Data Reflect The "Unconstricted" Profile >>>

<<< The Following Data Reflect The "Constricted" Profile >>> <<< Beginning Bridge/Culvert Hydraulic Computations >>>

===210 QUESTIONABLE CRITICAL-FLOW SOLUTION AT SECID "BRDG ". Q, CRWS: 1400.00 19.73

	WSEL	VHD	Q	AREA	SRDL	LEW
	EGEL	HF	V	K	FLEN	REW
	CRWS	HO	FR #	SF	ALPHA	ERR
Section: BRDG	19.730	2.037	1400.000	6 13427.94	50.000	-12.662
Header Type: BR	21.767	*****	10.820		50.000	15.129
SRD: 1050.000	19.730	*****	.935		1.118	*****
Specific Bridge I Bridge Type 2 F Pier/Pile Code 0	low Type 1			FELEV BLEN 27.250 *****	XLAB ** ******	XRAB * *******

*** Roadway Section Located at SRD 1062.000 ***

Section: ROAD Header Type: XR <<< Embankment Is Not Overtopped >>>

WSEL	VHD	Q	AREA	SRDL	LEW
EGEL	HF	v	K	FLEN	REW

				FR #			ERR
	Section: APPR Header Type: AS SRD: 1120.000	21.969 22.824 19.803	.855 .316 .743	1400.000 6.432 .593	217.668 23190.08 .0001	45.000 45.219 1.329	-18.938 25.908 .006
	M(G	oach Sectio ) M(K)	KO	Flow Contr XLKQ	action Inf XRKQ	ormation OTEL	
				5.4 -13.49	0 14.301	21.805	
				draulics Co			
	Section: SEC1 Header Type: XS SRD: 1500.000	23.325 24.084 20.563	.759 1.245 .000	1400.000 5.545 .663	252.474 25790.12 .0033	380.000 380.000 1.587	-25.218 48.045 .014
77.73 77.73	Section: SECA Header Type: XS SRD: 2000.000				220.427 25036.93		-17.479 37.609 .013
	===125 FR# EXCEEDS FNTEST, FR#	FNTEST AT , WSEL, CRW	SECID "S S: .8(	SEC3 ": TRI .82	TALS CONTIN	חשוו	
	===110 WSEL NOT FOR WSLIM1, WSL	UND AT SECI	D "SEC3	": REDUCEI			
	===115 WSEL NOT FOU WSLIM1, WSL	IM2, CRWS:	22.56	32.00	) 22.5	6	
	Section: SEC3 Header Type: XS SRD: 2500.000	22.563	.000	5.414 .813	27446.29 .0029	500.000 1.711	-45.536 64.231 .009
	===125 FR# EXCEEDS FNTEST, FR#,	FNTEST AT S WSEL, CRWS	SECID "S S: .80	EC4 ": TRI .85	ALS CONTIN 27.63	UED. 23.56	
	===110 WSEL NOT FOU WSLIM1, WSLI	ND AT SECII M2, DELTAY:	) "SEC4 : 23.	": REDUCED 56 33.	DELTAY. 00 .50		
	===115 WSEL NOT FOU WSLIM1, WSLI	ND AT SECII M2, CRWS:	) "SEC4 23.56	": USED WS 33.00	MIN = CRWS 23.5	6	
		28.312 1 23.563	.000	4.674 .853	29612.00 .0024	500.000 2.008	-71.172 88.652 .000
	===125 FR# EXCEEDS FNTEST, FR#,	FNTEST AT S WSEL, CRWS	ECID "S	EC5 ": TRI. .84	ALS CONTINU 28.76	JED. 24.56	
	===110 WSEL NOT FOU WSLIM1, WSLI	ND AT SECID M2, DELTAY:	SEC5 24.	": REDUCED 56 34.	DELTAY. 00 .50		
	===115 WSEL NOT FOU WSLIM1, WSLI	ND AT SECID M2, CRWS:	"SEC5 24.56	": USED WSI 34.00	MIN = CRWS. 24.56		
and the second secon	Header Type: XS	28.762 29.395 1 24.563	.076	1400.000 4.347 .844	322.069 30771.01 .0022		-82.309 99.261 .007

KRATIO: 3	RATIO OUTS .41	IDE OF	RECOMMENDED	LIMITS AT	SECID "SEC	CB ".				
Section: SECB Header Type: XS SRD: 4200.000	29.800 29.825 26.585	.025 .424 .000		1603.945 105036.20 .0006	700.000	-335.973 426.985 .005				
===135 CONVEYANCE KRATIO:	RATIO OUTS .69	IDE OF	RECOMMENDED	LIMITS AT	SECID "SEC	c6 ".				
Section: SEC6 Header Type: XS SRD: 4700.000	27.585	.053 .129 .014	1.306 .198	1072.257 72419.08 .0003	500.000 1.992	369.532 .001				
===135 CONVEYANCE KRATIO:	RATIO OUTS: 70	IDE OF	RECOMMENDED	LIMITS AT	SECID "SEC	7".				
Section: SEC7 Header Type: XS SRD: 5200.000	30.156 30.266 28.585	.110 .267 .029	1400.000 1.772 .310	789.946 50672.30 .0005		-25.393 320.123 .001				
Section: SEC8 Header Type: XS SRD: 5700.000	30.617 30.816 29.585	.199 .505 .044	1400.000 2.281 .447	613.784 38315.41 .0010		-23.731 285.126 .001				
Section: SEC9 Header Type: XS SRD: 6200.000	31.355 31.627 30.585	.272 .772 .037	1400.000 2.617 .544	534.966 33149.11 .0015	500.000 500.000 2.555	-22.920 268.043 .002				
***************************** W S P R O *********************************										
EXISTING COND	WETL	BRIDGE	STORATION, ABO E ON SR 1532	C SITE TTLL THE	FND OF APC	CT TTE				
	WETL ITIONS FROM WSEL EGEL CRWS	BRIDGE VHD HF HO	2 ON SR 1532 Q V FR #	TILL THE AREA K SF	END OF ABC SRDL FLEN ALPHA	SITE LEW REW ERR				
Section: EXIT Header Type: XS SRD: 1000.000	WETL ITIONS FROM WSEL EGEL CRWS 21.181 21.510 * 18.828 *	BRIDGE VHD HF HO .329 *****	C ON SR 1532 Q V FR # 2100.000 3.271 .492	TILL THE AREA K SF 642.033 46915.73 ******	SRDL FLEN ALPHA ********* 1.979	LEW REW ERR -21.361 215.081 ******				
Section: EXIT Header Type: XS SRD: 1000.000	WETL ITIONS FROM WSEL EGEL CRWS 21.181 21.510 * 18.828 *	BRIDGE VHD HF HO .329 *****	C ON SR 1532 Q V FR # 2100.000 3.271 .492	TILL THE AREA K SF 642.033 46915.73 ******	SRDL FLEN ALPHA ********* 1.979	LEW REW ERR -21.361 215.081 ******				
Section: EXIT Header Type: XS SRD: 1000.000 Section: FULV Header Type: FV SRD: 1050.000 <<< The Pre	WETL ITIONS FROM WSEL EGEL CRWS 21.181 21.510 * 18.828 * 21.314 21.616 18.828 ecceding Data	BRIDGE VHD HF HO .329 ***** .302 .096 .000 a Refle	C ON SR 1532 Q V FR # 2100.000 3.271 .492 2100.000 3.114 .472 ct The "Uncc	TILL THE AREA K SF 642.033 46915.73 ****** 674.302 49164.68 .0019	SRDL FLEN ALPHA ********* 1.979 50.000 50.000 2.004 'Profile >	LEW REW ERR -21.361 215.081 ***** -21.628 226.925 .010				
Section: EXIT Header Type: XS SRD: 1000.000 Section: FULV Header Type: FV SRD: 1050.000	WETL ITIONS FROM WSEL EGEL CRWS 21.181 21.510 * 18.828 * 21.314 21.616 18.828 ecceding Data	BRIDGE VHD HF HO .329 ***** .302 .096 .000 a Refle D "APPR	C ON SR 1532 Q V FR # 2100.000 3.271 .492 2100.000 3.114 .472 ct The "Unco	TILL THE AREA K SF 642.033 46915.73 ****** 674.302 49164.68 .0019 onstricted DELTAY.	SRDL FLEN ALPHA ********* 1.979 50.000 50.000 2.004 '_Profile >	LEW REW ERR -21.361 215.081 ***** -21.628 226.925 .010				
Section: EXIT Header Type: XS SRD: 1000.000 Section: FULV Header Type: FV SRD: 1050.000 <<< The Pre ===110 WSEL NOT FOU WSLIM1, WSLT ===115 WSEL NOT FOU	WETL ITIONS FROM WSEL EGEL CRWS 21.181 21.510 * 18.828 * 21.314 21.616 18.828 ecceding Data ND AT SECII	BRIDGE VHD HF HO .329 ***** .302 .096 .000 a Refle D "APPR 21 D "APPR	C ON SR 1532 Q V FR # 2100.000 3.271 .492 2100.000 3.114 .472 ct The "Uncc ": REDUCED .31 31.	TILL THE AREA K SF 642.033 46915.73 ****** 674.302 49164.68 .0019 onstricted DELTAY. 00 .50	SRDL FLEN ALPHA ********* 1.979 50.000 50.000 2.004 ' Profile >	LEW REW ERR -21.361 215.081 ***** -21.628 226.925 .010				

Martin Street

a and a second s

and the second second

the second second second

Pier/Pi		0		.098	27.25	) *******	* * * * * * * * *	******
Specifi Bridge	c Bridge Type 2	Information Flow Type 1	С	P/A	PFELEV	BLEN	XLAB	XRAB
	: BRDG Type: BR 1050.000	21.553 23.760 21.553		11.		184.419 1625.07 *****		-15.174 17.518 *****
		WSEL EGEL CRWS	VHD HF HO	Q V FR #		AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
===210 (	<<< B6	eginning Bri BLE CRITICAL	dge/Cult	vert Hy DLUTION	draulic	Computat	ions >>>	>
		Preceding Da Following D						
			to Pofl				1.301	
	n: APPR Type: AS 1120.000	23.803	2.490 ***** *****	11		189.321 9487.68 .0002	70.000	-17.626 23.939 *****

<u>Kana</u>

NAMESS NAMESS

*** Roadway Section Located at SRD 1062.000 ***

Section: ROAD Header Type: XR <<< Embankment Is Not Overtopped >>>

	WSEL	VHD	Q	AREA	SRDL	LEW
	EGEL	HF	V	K	FLEN	REW
	CRWS	HO	FR #	SF	ALPHA	ERR
Section: APPR	23.421	1.222	2100.000	338.300	45.000	-35.056
Header Type: AS	24.643	.324	6.208	31699.79	45.204	103.712
SRD: 1120.000	21.313	.570	1.001	.0002	2.039	.018

Approa	ch Section	APPR Flo	ow Contra	ction Info	ormation
M(G)	M(K)	KQ	XLKQ	XRKQ	OTEL
.229	.000	31896.1	-15.825	16.867	23.222

<<< End of Bridge Hydraulics Computations >>>

Type: XS	 ~~~~~~~	2100.000 3.927 .761	534.694 43938.01 0032	380.000	-47.336 197.730 009
				(A) the defendance in the first state of second the behavior of the state	009

===125 FR# EXCEEDS FNTEST AT SECID "SECA ": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS: .80 1.04 26.39 23.35

===110 WSEL NOT FOUND AT SECID "SECA ": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY: 23.35 31.00 .50

==115 WSEL NOT FOUND AT SECID "SECA ": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS: 23.35 31.00 23.35

	SRD:	ion: SECA er Type: XS 2000.000	23.353	.133	4.490 1.045	38189.95	500.000 2.865	-135.042 149.495 .001
	incua.	on: SEC3 er Type: XS 2500.000	. 20.402	1.198	3.204	655.375 48181.66 .0024	500.000	-182.868 195.054 001
	===125	FR# EXCEEDS FNTEST, FR#,	FNTEST AI WSEL, CF	SECID '	"SEC4 ": 3 30 .80	FRIALS CONTI 28.91	NUED. 25.35	
	===110	WSEL NOT FOU WSLIM1, WSLI	ND AT SEC M2, DELTA	ID "SEC4 Y: 25	4 ": REDUC	CED DELTAY. 33.00 .5	0	
	===115	WSEL NOT FOU WSLIM1, WSLI	ND AT SEC M2, CRWS:	ID "SEC4 25.3	I ": USED 35 33.	$\begin{array}{l} \text{WSMIN} = \text{CRW} \\ 00 \qquad 25. \end{array}$	S. 35	
	Secti Heade SRD:	on: SEC4 r Type: XS 3000.000	28.919 29.466 25.353	.547 .964 .009	2100.000 3.269 .796	642.347 47467.13 .0019	500.000 500.000 3.291	-179.936 192.262 .010
		FR# EXCEEDS FNTEST, FR#,	FNTEST AT	SECID "	SEC5 "· T	RTAIS CONTT		
	===110	WSEL NOT FOUL WSLIM1, WSLIM	ND AT SEC M2, DELTA	ID "SEC5 Y: 26		ED DELTAY. 4.00 .50	D	
	===115	WSEL NOT FOUN WSLIM1, WSLIM	ND AT SEC 12, CRWS:	ID "SEC5 26.3	": USED 5 34.	WSMIN = CRWS 00 26.3	S. 35	
	Section Header SRD:	on: SEC5 Type: XS 3500.000	29.909 30.461 26.353	.553 .983 .003	3.288	638.631 47263.90 .0020	500.000	191.457
	===135	CONVEYANCE RA KRATIO: 3.65	TIO OUTSI	DE OF RI	ECOMMENDED	LIMITS AT S	SECID "SECE	3 ".
R	Header	on: SECB Type: XS 4200.000	30.850	.020 .378 .000		2441.428 172627.80 .0005	700.000 700.000 1.756	-376.595 464.892 .010
	===135	CONVEYANCE RA KRATIO: .65	TIO OUTSI	DE OF RE	ECOMMENDED	LIMITS AT S	ECID "SEC6	".
		n: SEC6 Type: XS 4700.000	30.929 30.978 28.152	.049 .114 .014	2100.000 1.232 .213	1704.231 111717.00 .0002	500.000 500.000 2.075	-351.502 435.397 .000
	===135	CONVEYANCE RA KRATIO: .70	TIO OUTSI	DE OF RE	COMMENDED	LIMITS AT S	ECID "SEC7	".
	Header	n: SEC7 Type: XS 5200.000	31.152 31.256 29.152	.103 .253 .027	2100.000 1.788 .295	1174.450 78095.17 .0005	500.000 500.000 2.076	-258.298 384.911 002
and the second sec		n: SEC8 Type: XS 5700.000	31.585 31.746 30.152	.161 .453 .029	2100.000 2.224 .358	944.353 62297.75 .0009	500.000 500.000 2.097	-26.717 347.993 .008
		n: SEC9 Type: XS	32.230 32.459	.229 .673	2100.000 2.575	815.633 52558.16	500.000 500.000	-25.621 324.920

SRD:	6200.000	31.152	.034		.444	.0013	2.223	.006
	rederal M	************ Highway Adm odel for Wa put Units:	inistrat ter-Surf	tion - face Pr	U.S. ofile Co	Geologic	al Survey	****
, F Si	XISTING CON	WE	TLAND RE	STORAT	RT COUNT ION,ABC R 1532 T	STUE	END OF ABC	* C SITE
		WSEL EGEL CRWS	VHD HF HO	Q V FR		AREA K SF	SRDL FLEN ALPHA	LEW REW ERR
Heade	on: EXIT r Type: XS 1000.000	22.114	.339 ***** *****	3		798.596 * 8085.06 * ******	*******	-22.550 267.967 *****
Secti Heade SRD:	on: FULV r Type: FV 1050.000	21.911 22.219 19.306	.095	2600 3	.099 6:	1054.09	50.000 50.000 2.061	-22.821 280.052 .010
===110	<<< The P WSEL NOT F	receding Da					Profile	>>>
	WSLIMI, WS WSEL NOT F	LIM2, DELTA	Y: 2 ID "APP	1.98	31.00	.50		
	CRITICAL W ENERGY EQU	LIM2, CRWS:	21. E ELEVA B A L	98 TIONA ANC	31.00 $S S$ $E D AT$	21.9	8	!!!!!
Sectio Heade SRD:	on: APPR Type: AS 1120.000	21.982 24.917 21.982	*****	2600. 11. 1.	912 23	18.258 268.42 .0002	70.000 70.000 1.330	-18.965 25.947 *****
े. जि		receding Da						
	<<< The : <<< Be	Following D ginning Bri	ata Ref] dge/Cul\	lect Th vert Hy	e "Const draulic	ricted" l Computati	Profile >> ions >>>	<b>&gt;&gt;</b>
===210	QUESTIONAB Q, CRWS:	LE CRITICAL 2600.00	-FLOW SC 22.	DLUTION 64	AT SECI	D "BRDG '	<b>'.</b>	
		WSEL EGEL CRWS	VHD HF HO	Q V FR #		REA K SF	SRDL FLEN ALPHA	LEW REW ERR
	n: BRDG Type: BR 1050.000	22.638 25.716 22.638	*****	2600. 11.	738 27.	21.507 509.84 *****	50.000 50.000 1.437	-16.694 18.930 *****
Bridge	ic Bridge I Type 2 B	information low Type 1	с	P/A	PFELEV	BLEN	XLAB	XRAB
Pier/P	ile Code (		.8343	.097	27.250	*******	*******	******

*** Roadway Section Located at SRD 1062.000 ***

Section: ROAD Header Type: XR <<< Embankment Is Not Overtopped >>> VHD WSEL Q AREA SRDL LEW EGEL HFV K FLEN REW HO FR # SF CRWS ALPHA ERR - --- --- --- --- ---Section: APPR26.062.2622600.0001073.73745.000-79.988Header Type: AS26.325.1552.42179740.1645.232346.334SRD:1120.00021.982.456.456.00022.878.011 Approach Section APPR Flow Contraction Information M(G) M(K) KQ XLKQ XRKQ OTEL -----_____ .251 .335 52771.7 -17.252 18.371 26.014 _____ <<< End of Bridge Hydraulics Computations >>> Section: SEC1 26.472 .352 2600.000 931.673 380.000 -71.085 Header Type: XS 26.824 .461 2.791 69880.69 380.000 314.152 SRD: 1500.000 22.742 .045 .539 .0012 2.905 -.007 ===125 FR# EXCEEDS FNTEST AT SECID "SECA ": TRIALS CONTINUED.

FNTEST, FR#, WSEL, CRWS: .80 .82 27.23 26.67

===110 WSEL NOT FOUND AT SECID "SECA ": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY: 26.67 31.00 .50

.

===115 WSEL NOT FOUND AT SECID "SECA ": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS: 26.67 31.00 26.67

Section: SECA	27.230	.611	2600.000	766.253	500.000	-206.221
Header Type: XS	27.841	.889	3.393	54391.87	500.000	217.301
SRD: 2000.000	26.674	.129	.821	.0018	3.410	002
Section: SEC3	28.391	.516	2600.000	836.492	500.000	-219.794
Header Type: XS	28.907	1.063	3.108	58443.30	500.000	230.230
SRD: 2500.000	27.674	.000	.745	.0021	3.435	.003
Section: SEC4	29.386	.519	2600.000	834.272	500.000	-219.377
Header Type: XS	29.905	.992	3.116	58313.85	500.000	229.833
SRD: 3000.000	28.674	.001	.747	.0020	3.434	.005
Section: SEC5	30.386	.519	2600.000	834.205	500.000	-219.365
Header Type: XS	30.905	.994	3.117	58309.95	500.000	229.821
SRD: 3500.000	29.674	.000	.747	.0020	3.434	.006

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS AT SECID "SECB ". KRATIO: 3.59

Section: SECE Header Type: SRD: 4200.0	XS 31.299	.388	2600.000 .921 .114	2823.394 209102.30 .0006	700.000 700.000 1.625	-385.554 478.331 .006
===135 CONVEYA KRATIO:	NCE RATIO OUT: .67	SIDE OF	RECOMMENDED	LIMITS AT	SECID "SEC	5 ".
Section: SEC6	31.380	.047	2600.000	2068.258	500.000	-367.606

	Header SRD:	Type: XS 4700.000	31.427 28.448	.115 .013	1.257 .193	139958.30 .0002	500.000 1.916	451.408 .000	
	===135	CONVEYANCE RA KRATIO: .68	TIO OUTSI	DE OF R	ECOMMENDED	LIMITS AT	SECID "SEC	7".	
		on: SEC7 Type: XS 5200.000	31.605 31.709 29.448	.104 .253 .029	2600.000 1.783 .322	1458.619 95635.61 .0005		-312.562 414.304 .001	
		n: SEC8 Type: XS 5700.000	32.045 32.214 30.448	.169 .470 .032	2600.000 2.312 .360	1124.677 75261.20 .0009	500.000 500.000 2.037	-245.402 377.926 .003	
		n: SEC9 Type: XS 6200.000	32.715 32.934 31.448	.219 .679 .025	2600.000 2.616 .411	993.778 66158.79 .0014		-27.120 356.466 .016	
	*	************ Federal High Model Input V	way Admin: for Wate:	istratio r-Surfac	PRO *** on - U.S ce Profile / Output U	. Geologic Computatio	al Survey ns.	***	
	*- EX	ISTING CONDIT:	ACRE SI WETLZ	WAMP, BI AND RES	EAUFORT COU	NTY, NC		*	
				VHD HF HO	Q V FR #	AREA K SF	SRDL FLEN ALPHA	LEW REW ERR	
		n: EXIT Type: XS 1000.000	22.423 22.768 ** 19.860 **		3300.000 3.280 .489	1006.081 73737.98 *****	 ********* ******** 2.060	-23.847 325.670 *****	
		n: FULV Type: FV 1050.000	22.559 22.872 19.860	.313 .095 .000	3300.000 3.130 .463	1054.271 77495.90 .0019		-24.118 337.729 .008	
		<<< The Prece					" Profile >	·>>	
	I	WSEL NOT FOUNE WSLIM1, WSLIM2	2, DELTAY:	24.	.72 31	.00 .50			
	I	WSEL NOT FOUNE WSLIM1, WSLIM2	?, CRWS:	24.72	31.0	0 24.7	72		
	]	CRITICAL WATEF ENERGY EQUATIC WSBEG, WSEND,	NNOT	BALA	NCED 7	SUM AT SECID "2 24.72	APPR ".	!!!!	
	Header	n: APPR Type: AS 1120.000	25.983 **	****	5.453	48449 69	70 000	222 706	
3		<<< The Prece							
		<<< The Foll <<< Beginn	owing Dat ing Bridg	a Refle e/Culve	ct The "Cor rt Hydrauli	nstricted" ic Computat	Profile >>: cions >>>	>	
	==220 I	FLOW CLASS 1 (	4 ) SOLU	TION IN	DICATES POS	SSIBLE PRES	SSURE FLOW.		
8 4 9 9					f				
ъ.									

WS3, WSIU, WS1, PFELV: 23.99 28.18 28.28 27.25 ===245 ATTEMPTING FLOW CLASS 2 ( 5 ) SOLUTION.

and a second second

			WSEL EGEL CRWS	VHD HF HO	Q V FR #	AR K S		SRDL FLEN ALPHA	LEW REW ERR
			28.92	0 1.678 8 ***** 2 *****	3344.23 8.75 .93	56 406	50.20 *	50.000 ******* 1.407	-25.000 25.000 *****
	Specifi	c Bridge I Type 2	Informati	on C 5	P/A 1	PFELEV	BLEN	XLAB	XRAB
	Pier/Pi	le Code (	)	.4585	.084	27.250	*****	* *******	*****
				VHD HF	Q V	ARI El		FLEN SRD	LEW REW
	Section Header '	: ROAD Type: XR	29.12 29.15	5 .038 4 .009	7.49 1.37			45.000 1062.000	
	J	Hydraulic	Characte	ristics of	E Left an	nd Right	Roadwag	y Sections	
	Weir Flow (Q) Weir Length (WLEN) Weir LEW (LEW) Weir REW (REW) Maximum Depth (DMAX) Average Depth (DAVG) Maximum Velocity (VMAX) Average Velocity (VAVG) Average Head (HAVG) Weir Coefficient (CAVG)		Left Weir .73 8.364 -7.813 .552 .125 .067 1.366 1.310 .096 2.943			Right Weir 6.77 54.136 .552 54.688 .125 .091 1.564 1.378 .120 3.011			
			WSEL EGEL CRWS	VHD HF HO	Q V FR #	ARI K SI		SRDL FLEN ALPHA	LEW REW ERR
		: APPR Type: AS 1120.000	29.12 29.16 24.71	3.061	3300.00 1.02 .15	23931	9.783 12.30 .0003	45.000 50.069 2.309	
		Appı M(G		ion APPR ) KQ			on Info KRKQ	cmation OTEL	
		*****	** *****	*** *****	*** ****	**** ***	*****	****	
			< End of	Bridge Hy	draulice	Comput-			
- -	Section:		29.203	nin hardi sake shenna ila senim Tarihi s	3300.00	an a	L.667	380.000	-322 012
	Header 7	Гуре: XS 1500.000	29.268	.093	1.28	8 18640		380.000	565.070 001
		: SECA Type: XS 2000.000	29.389 29.496 27.264	5.206	3300.00 1.59 .28	0 2064 8 14148	1.817	500.000 500.000 2.695	

Ð		n: SEC3 Type: XS 2500.000	29.699 29.909 28.264	.210 .366 .052	3300.000 2.107 .422	1566.052 105279.70 .0007	500.000 500.000 3.042	-330.183 335.388 004
		n: SEC4 Type: XS 3000.000	30.236 30.575 29.264	.339 .604 .064	3300.000 2.587 .559	1275.788 85681.80 .0012	500.000 500.000 3.257	-291.139 298.194 002
	Header	n: SEC5 Type: XS 3500.000	31.005 31.438 30.264	.433 .823 .047	3300.000 2.884 .646	1144.048 77188.38 .0016	500.000 500.000 3.344	-271.643 279.622 007
Ξ		CONVEYANCE RA KRATIO: 3.33	TIO OUTSI	DE OF	RECOMMENDED	LIMITS AT	SECID "SEC	в".
	Header	n: SECB Type: XS 4200.000	31.808 31.832 27.808	.024 .384 .000	3300.000 1.003 .113	3288.876 257214.60 .0005	700.000 700.000 1.504	-396.168 494.251 .010
• =	===135	CONVEYANCE RA KRATIO: .70		DE OF	RECOMMENDED	LIMITS AT	SECID "SEC	6 ".
			31.916 31.962 28.808	.046 .118 .011	3300.000 1.313 .176	2513.820 179316.40 .0002	500.000 500.000 1.728	-378.311 467.467 .001
	===135	CONVEYANCE RA KRATIO: .69		DE OF	RECOMMENDED	LIMITS AT	SECID "SEC	7".
	Header	on: SEC7 Type: XS 5200.000	32.136 32.234 29.808	.097 .245 .026	3300.000 1.765 .290	1869.846 123927.30 .0005	500.000 500.000 2.010	-362.724 444.086 .001
	Header	on: SEC8 Type: XS 5700.000	32.564 32.739 30.808	.175 .469 .039	3300.000 2.309 .420	1429.267 93780.66 .0009	500.000 500.000 2.114	-307.691 411.666 002
	Heade	on: SEC9 r Type: XS 6200.000	33.252 33.487 31.808	.235 .713 .030	3300.000 2.690 .461	1226.932 81415.64 .0014	500.000 500.000 2.086	-270.266 391.394 .005

ER

2